Harvard College

Math 21a: Multivariable Calculus

FORMULA AND THEOREM REVIEW

Tommy MacWilliam, '13

tmacwilliam@college.harvard.edu December 15, 2009

Contents

Ta	ıble o	of Contents	
9	Vec	tors and the Geometry of Space	
	9.1	Distance Formula in 3 Dimensions	
	9.2	Equation of a Sphere	
	9.3	Properties of Vectors	
	9.4	Unit Vector	
	9.5	Dot Product	
	9.6	Properties of the Dot Product	
	9.7	Vector Projections	
	9.8	Cross Product	
	9.9	Properties of the Cross Product	
	9.10	Scalar Triple Product	
	9.11	Vector Equation of a Line	
	9.12	Symmetric Equations of a Line	
	9.13	Segment of a Line	
	9.14	Vector Equation of a Plane	
	9.15	Scalar Equation of a Plane	
		Distance Between Point and Plane	
	9.17	Distance Between Point and Line	
		Distance Between Line and Line	
		Distance Between Plane and Plane	
		Quadric Surfaces	
		Cylindrical Coordinates	
		Spherical Coordinates	
10	Vec	tor Functions	
10		Limit of a Vector Function	
		Derivative of a Vector Function	
		Unit Tangent Vector	
		Derivative Rules for Vector Functions	
		Integral of a Vector Function	
		Arc Length of a Vector Function	
		Curvature	1
		Normal and Binormal Vectors	1
		Velocity and Acceleration	1
		Parametric Equations of Trajectory	1
		1 0 0	
		1 Tangential and Normal Components of Acceleration	1 1
	10.17	2Equations of a Parametric Surface	

11 Partial Derivatives			
11.1 Limit of $f(x,y)$			
11.2 Strategy to Determine if Limit Exists			
11.3 Continuity			
11.4 Definition of Partial Derivative			
11.5 Notation of Partial Derivative			
11.6 Clairaut's Theorem			
11.7 Tangent Plane			
11.8 The Chain Rule			
11.9 Implicit Differentiation			
11.10Gradient			
11.11Directional Derivative			
11.12Maximizing the Directional Derivative			
11.13Second Derivative Test			
11.14Method of Lagrange Multipliers			
12 Multiple Integrals			
12.1 Volume under a Surface			
12.2 Average Value of a Function of Two Variables			
12.3 Fubini's Theorem			
12.4 Splitting a Double Integral			
12.5 Double Integral in Polar Coordinates			
12.6 Surface Area			
12.7 Surface Area of a Graph			
12.8 Triple Integrals in Spherical Coordinates			
13 Vector Calculus			
13.1 Line Integral			
13.2 Fundamental Theorem of Line Integrals			
13.3 Path Independence			
13.4 Curl			
13.5 Conservative Vector Field Test			
13.6 Divergence			
13.7 Green's Theorem			
13.8 Surface Integral			
13.9 Flux			
13.10Stokes' Theorem			
13.11Divergence Theorem			
14 Appendix A: Selected Surface Paramatrizations			
14.1 Sphere of Radius ρ			
14.2 Graph of a Function $f(x,y)$			
14.3 Graph of a Function $f(\phi, r)$		_	

14.4	Plane Containing P, \vec{u} , and \vec{v}
14.5	Surface of Revolution
14.6	Cylinder
14.7	Cone
14.8	Paraboloid
15 App	pendix B: Selected Differential Equations 16
	pendix B: Selected Differential Equations Heat Equation
15.1	•
15.1 15.2	Heat Equation
15.1 15.2 15.3	Heat Equation

9 Vectors and the Geometry of Space

9.1 Distance Formula in 3 Dimensions

The distance between the points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is given by:

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

9.2 Equation of a Sphere

The equation of a sphere with center (h, k, l) and radius r is given by:

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

9.3 Properties of Vectors

If \vec{a}, \vec{b} , and \vec{c} are vectors and c and d are scalars:

$$\vec{a} + \vec{b} = \vec{b} + \vec{a} & \vec{a} + 0 = \vec{a} \\ \vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c} & \vec{a} + -\vec{a} = 0 \\ c(\vec{a} + \vec{b}) = c\vec{a} + c + \vec{b} & (c + d)\vec{a} = c\vec{a} + d\vec{a} \\ (cd)\vec{a} = c(d\vec{a}) & (c + d)\vec{a} = c\vec{a} + d\vec{a}$$

9.4 Unit Vector

A unit vector is a vector whose length is 1. The unit vector \vec{u} in the same direction as \vec{a} is given by:

$$\vec{u} = \frac{\vec{a}}{|\vec{a}|}$$

9.5 Dot Product

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$
$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

9.6 Properties of the Dot Product

Two vectors are orthogonal if their dot product is 0.

$$\vec{a} \cdot \vec{a} = |\vec{a}|^2$$

$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

$$(c\vec{a}) \cdot \vec{b} = c(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (c\vec{b})$$

$$0 \cdot \vec{a} = 0$$

9.7 Vector Projections

Scalar projection of \vec{b} onto \vec{a} :

$$\operatorname{comp}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$$

Vector projection of \vec{b} onto \vec{a} :

$$\operatorname{proj}_{\vec{a}} \vec{b} = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}\right) \frac{\vec{a}}{|\vec{a}|}$$

9.8 Cross Product

$$\vec{a} \times \vec{b} = (|\vec{a}||\vec{b}|\sin\theta)\vec{n}$$

where \vec{n} is the unit vector orthogonal to both \vec{a} and \vec{b} .

$$\vec{a} \times \vec{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$

9.9 Properties of the Cross Product

Two vectors are parallel if their cross product is 0.

$$ec{a} imes ec{b} = -ec{b} imes ec{a}$$
 $ec{a} imes (ec{b} + ec{c}) = ec{a} imes ec{b} + ec{a} imes ec{c}$

$$(c\vec{a}) \times \vec{b} = c(\vec{a} \times \vec{b}) = \vec{a} \times (c\vec{b})$$

$$(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$$

9.10 Scalar Triple Product

The volume of the parallel piped determined by vectors \vec{a} , \vec{b} , and \vec{c} is the magnitude of their scalar triple product:

$$V = |\vec{a} \cdot (\vec{b} \times \vec{c})|$$
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{c} \cdot (\vec{a} \times \vec{b})$$

9.11 Vector Equation of a Line

$$\vec{r} = \vec{r}_0 + t\vec{v}$$

9.12 Symmetric Equations of a Line

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

where the vector $\vec{c} = \langle a, b, c \rangle$ is the direction of the line.

The symmetric equations for a line passing through the points (x_0, y_0, z_0) and (x_1, y_1, z_1) are given by:

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}$$

9.13 Segment of a Line

The line segment from \vec{r}_0 to \vec{r}_1 is given by:

$$\vec{r}(t) = (1 - t)\vec{r_0} + t\vec{r_1}$$
 for $0 \le t \le 1$

9.14 Vector Equation of a Plane

$$\vec{n} \cdot (\vec{r} - \vec{r}_0) = 0$$

where \vec{n} is the vector orthogonal to every vector in the given plane and $\vec{r} - \vec{r_0}$ is the vector between any two points on the plane.

9.15 Scalar Equation of a Plane

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

where (x_0, y_0, z_0) is a point on the plane and $\langle a, b, c \rangle$ is the vector normal to the plane.

9.16 Distance Between Point and Plane

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

$$d(P, \Sigma) = \frac{|\vec{PQ} \cdot \vec{n}|}{|\vec{n}|}$$

where P is a point, Σ is a plane, Q is a point on plane Σ , and \vec{n} is the vector orthogonal to the plane.

9.17 Distance Between Point and Line

$$d(P, L) = \frac{|\vec{PQ} \times \vec{u}|}{|\vec{u}|}$$

where P is a point in space, Q is a point on the line L, and \vec{u} is the direction of line.

9.18 Distance Between Line and Line

$$d(L, M) = \frac{|(\vec{PQ}) \cdot (\vec{u} \times \vec{v})|}{|\vec{u} \times \vec{v}|}$$

where P is a point on line L, Q is a point on line M, \vec{u} is the direction of line L, and \vec{v} is the direction of line M.

9.19 Distance Between Plane and Plane

$$d = \frac{|e - d|}{|\vec{n}|}$$

where \vec{n} is the vector orthogonal to both planes, e is the constant of one plane, and d is the constant of the other. The distance between non-parallel planes is 0.

9.20 Quadric Surfaces

Ellipsoid:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
Elliptic Paraboloid:
$$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
Hyperbolic Paraboloid:
$$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Cone:
$$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Hyperboloid of One Sheet:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Hyperboloid of Two Sheets:
$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

9.21 Cylindrical Coordinates

To convert from cylindrical to rectangular:

$$x = r \cos \theta$$
 $y = r \sin \theta$ $z = z$

To convert from rectangular to cylindrical:

$$r^2 = x^2 + y^2 \quad \tan \theta = \frac{y}{x} \quad z = z$$

9.22 Spherical Coordinates

To convert from spherical to rectangular:

$$x = \rho \sin \phi \cos \theta$$
 $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$

To convert from rectangular to spherical:

$$\rho^2 = x^2 + y^2 + z^2 \quad \tan \theta = \frac{y}{x} \quad \cos \phi = \frac{z}{\rho}$$

8

10 Vector Functions

10.1 Limit of a Vector Function

$$\lim_{t \to a} \vec{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle$$

10.2 Derivative of a Vector Function

$$\frac{d\vec{r}}{dt} = \vec{r}'(t) = \lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h}$$
$$\vec{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$$

10.3 Unit Tangent Vector

$$T(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}$$

10.4 Derivative Rules for Vector Functions

$$\frac{d}{dt}[\vec{u}(t) + \vec{v}(t)] = \vec{u}'(t) + \vec{v}'(t)
\frac{d}{dt}[c\vec{u}(t)] = c\vec{u}'(t)
\frac{d}{dt}[f(t)\vec{u}(t)] = f'(t) \vec{u}(t) + f(t)\vec{u}'(t)
\frac{d}{dt}[\vec{u}(t) \cdot \vec{v}(t)] = \vec{u}'(t) \cdot \vec{v}(t) + \vec{u}(t) \cdot \vec{v}'(t)
\frac{d}{dt}[\vec{u}(t) \times \vec{v}(t)] = \vec{u}'(t) \times \vec{v}(t) + \vec{u}(t) \times \vec{v}'(t)
\frac{d}{dt}[\vec{u}(f(t))] = f'(t) \vec{u}'(f(t))$$

10.5 Integral of a Vector Function

$$\int_a^b \vec{r}(t) \ dt = \left\langle \int_a^b f(t) \ dt, \int_a^b g(t) \ dt, \int_a^b h(t) \ dt \right\rangle$$

10.6 Arc Length of a Vector Function

$$L = \int_{a}^{b} |r'(t)| dt$$

9

10.7 Curvature

$$\kappa = \left| \frac{d\vec{T}}{ds} \right| = \frac{|\vec{T}'(t)|}{|\vec{r}'(t)|}$$

$$\kappa = \frac{|\vec{r}'(t) \times \vec{r}''(t)|}{|\vec{r}'(t)|^3}$$

$$\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}}$$

10.8 Normal and Binormal Vectors

$$\vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|}$$

$$\vec{B}(t) = \vec{T}(t) \times \vec{N}(t)$$

10.9 Velocity and Acceleration

$$\vec{v}(t) = \vec{r}'(t)$$
$$\vec{a}(t) = \vec{v}'(t) = \vec{r}''(t)$$

10.10 Parametric Equations of Trajectory

$$x = (v_0 \cos \alpha)t$$
 $y = (v_0 \sin \alpha)t - \frac{1}{2}gt^2$

10.11 Tangential and Normal Components of Acceleration

$$\vec{a} = v'\vec{T} + \kappa v^2 \vec{N}$$

10.12 Equations of a Parametric Surface

$$x = x(u, v)$$
 $y = y(u, v)$ $z = z(u, v)$

11 Partial Derivatives

11.1 Limit of f(x,y)

If $f(x,y) \to L_1$ as $(x,y) \to (a,b)$ along a path C_1 and $f(x,y) \to L_2$ as $(x,y) \to (a,b)$ along a path C_2 , then $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.

11.2 Strategy to Determine if Limit Exists

- 1. Substitute in for x and y. If point is defined, limit exists. If not, continue.
- 2. Approach (x, y) from the x-axis by setting y = 0 and taking $\lim_{x\to a}$. Compare this result to approaching (x, y) from the y-axis by setting x = 0 and taking $\lim_{y\to a}$. If these results are different, then the limit does not exist. If results are the same, continue.
- 3. Approach (x, y) from any nonvertical line by setting y = mx and taking $\lim_{x\to a}$. If this limit depends on the value of m, then the limit of the function does not exist. If not, continue.
- 4. Rewrite the function in cylindrical coordinates and take $\lim_{r\to a}$. If this limit does not exist, then the limit of the function does not exist.

11.3 Continuity

A function is continuous at (a, b) if

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

11.4 Definition of Partial Derivative

$$f_x(a,b) = g'(a)$$
 where $g(x) = f(x,b)$
$$f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

To find f_x , regard y as a constant and differentiate f(x,y) with respect to x.

11.5 Notation of Partial Derivative

$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x,y) = D_x f$$

11.6 Clairaut's Theorem

If the functions f_{xy} and f_{yx} are both continuous, then

$$f_{xy}(a,b) = f_{yx}(a,b)$$

11.7 Tangent Plane

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

11.8 The Chain Rule

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

11.9 Implicit Differentiation

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$

11.10 Gradient

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle$$

11.11 Directional Derivative

$$D_{\vec{u}}f(x,y) = \nabla f(x,y) \cdot \vec{u}$$

where $\vec{u} = \langle a, b \rangle$ is a unit vector.

11.12 Maximizing the Directional Derivative

The maximum value of the directional derivative $D_{\vec{u}}f(x)$ is $|\nabla f(x)|$ and it occurs when \vec{u} has the same direction as the gradient vector $\nabla f(x)$.

11.13 Second Derivative Test

Let $D = f_{xx}(a, b) f_{yy}(a, b) - (f_{xy}(a, b))^2$.

- 1. If D > 0 and $f_{xx}(a, b) > 0$ then f(a, b) is a local minimum.
- 2. If D > 0 and $f_{xx}(a, b) < 0$ then f(a, b) is a local maximum.
- 3. If D < 0 and $f_{xx}(a,b) > 0$ then f(a,b) is a not a local maximum or minimum, but could be a saddle point.

11.14 Method of Lagrange Multipliers

To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k:

1. Find all values of x, y, z and λ such that

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$
 and $g(x, y, z) = k$

2. Evaluate f at all of these points. The largest is the maximum value, and the smallest is the minimum value of f subject to the constraint g.

12 Multiple Integrals

12.1 Volume under a Surface

$$V = \iint\limits_D f(x,y) \ dx \ dy$$

12.2 Average Value of a Function of Two Variables

$$f_{avg} = \frac{1}{A(R)} \iint_{R} f(x, y) \ dx \ dy$$

12.3 Fubini's Theorem

$$\iint_{D} f(x,y) \ dA = \int_{a}^{b} \int_{c}^{d} f(x,y) \ dy \ dx = \int_{c}^{d} \int_{a}^{b} f(x,y) \ dx \ dy$$

12.4 Splitting a Double Integral

$$\iint\limits_{R} g(x)h(y) \ dA = \int_{a}^{b} g(x) \ dx \ \int_{c}^{d} h(y) \ dy$$

12.5 Double Integral in Polar Coordinates

$$\iint\limits_{R} f(x,y) \ dA = \int_{a}^{b} \int_{c}^{d} f(r\cos\theta, r\sin\theta) r \ dr \ d\theta$$

12.6 Surface Area

$$A(S) = \iint\limits_{D} |\vec{r_u} \times \vec{r_v}| \ dA$$

where a smooth parametric surface S is given by $\vec{r}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$.

12.7 Surface Area of a Graph

$$A(S) = \iint\limits_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}$$

13

12.8 Triple Integrals in Spherical Coordinates

$$\iiint\limits_E f(x,y,z) \ dV = \int_c^d \int_\alpha^\beta \int_a^b f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi \ d\rho \ d\theta \ d\phi$$

13 Vector Calculus

13.1 Line Integral

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

13.2 Fundamental Theorem of Line Integrals

$$\int_{C} \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$$

13.3 Path Independence

 $\int_C \vec{F} \cdot d\vec{r}$ is independent of path in D if and only if $\int_C \vec{F} \cdot d\vec{r} = 0$ for every closed path C in D .

13.4 Curl

$$\operatorname{curl}(\vec{F}) = \nabla \times \vec{F}$$

13.5 Conservative Vector Field Test

 \vec{F} is conservative if curl $\vec{F} = 0$ and the domain is closed and simply connected.

13.6 Divergence

$$\operatorname{div}(\vec{F}) = \nabla \cdot F$$

13.7 Green's Theorem

$$\int_{C} \vec{F} \cdot d\vec{r} = \iint_{R} \operatorname{curl}(\vec{F}) \, dx \, dy$$

13.8 Surface Integral

$$\iint\limits_{S} f(x, y, z) \ dS = \iint\limits_{D} f(\vec{r}(u, v)) |\vec{r}_{u} \times \vec{r}_{v}| \ dA$$

13.9 Flux

$$\iint\limits_{S} \vec{F} \cdot d\vec{S} = \iint\limits_{D} \vec{F} \cdot (\vec{r}_{u} \times \vec{r}_{v}) \ dA$$

13.10 Stokes' Theorem

$$\int_{C} \vec{F} \cdot d\vec{r} = \iint_{S} \operatorname{curl}(\vec{F}) \cdot d\vec{S}$$

13.11 Divergence Theorem

$$\iint\limits_{S} \vec{F} \cdot d\vec{S} = \iiint\limits_{E} \operatorname{div}(\vec{F}) \ dV$$

- 14 Appendix A: Selected Surface Paramatrizations
- 14.1 Sphere of Radius ρ

$$\vec{r}(u,v) = \langle \rho \cos u \sin v, \rho \sin u \sin v, \rho \cos v \rangle$$

14.2 Graph of a Function f(x, y)

$$\vec{r}(u,v) = \langle u, v, f(u,v) \rangle$$

14.3 Graph of a Function $f(\phi, r)$

$$\vec{r}(u,v) = \langle v \cos u, v \sin u, f(u,v) \rangle$$

14.4 Plane Containing P, \vec{u} , and \vec{v}

$$\vec{r}(s,t) = \vec{OP} + s\vec{u} + t\vec{v}$$

14.5 Surface of Revolution

$$\vec{r}(u,v) = \langle g(v)\cos u, g(v)\sin u, v \rangle$$

where g(z) gives the distance from the z-axis.

14.6 Cylinder

$$\vec{r}(u,v) = \langle \cos u, \sin u, v \rangle$$

14.7 Cone

$$\vec{r}(u,v) = \langle v \cos u, v \sin u, v \rangle$$

14.8 Paraboloid

$$\vec{r}(u,v) = \langle \sqrt{v}\cos u, \sqrt{v}\sin u, v \rangle$$

- 15 Appendix B: Selected Differential Equations
- 15.1 Heat Equation

$$f_t = f_{xx}$$

15.2 Wave Equation (Wavequation)

$$f_{tt} = f_{xx}$$

15.3 Transport (Advection) Equation

$$f_x = f_t$$

15.4 Laplace Equation

$$f_{xx} = -f_{yy}$$

15.5 Burgers Equation

$$f_{xx} = f_t + f f_x$$