STA2023

1) If $P(A) = 0.25$, P	P(B) = 0.51, and $P(A or B)$	() = 0.76, are <i>A</i> and	<i>B</i> mutually exclusive?	1)	Α
A) Yes If A & B are	mutually exclusive, then P(A)	B) NO + P(B) = P(A or B)	P(A) + P(B) = P(A or B) 0.25 + 0.51 = 0.76		
2) If $P(A) = 0.37$, P	P(B) = 0.7, and $P(A or B)$	= 0.74, are A and B	mutually exclusive?	2)	А
A) No		B) Yes	P(A) + P(B) = P(A or B) 0.37 + 0.7 = 0.74? No.	-	
3) In a fish tank, the	ere are 28 goldfish, 3 ang	gelfish, and 17 gupp	bies. If a fish is selected at	3)	D
random, find the	probability that it is an a	angelfish or a guppy	7. Total: $28 + 3 + 17 = 48$		
A) $\frac{7}{12}$	B) $\frac{31}{48}$	C) $\frac{15}{16}$	D) $\frac{5}{12}$		
A: angelfish, B:	guppy $P(A) + P(B) = P(A \text{ or }$	B) Therefore: $3/48 + 17/4$	8 = 20/48 => 5/12		
4) If a single card is drawing a jack.	s drawn from an ordinary	v deck of cards, what	at is the probability of	4) _	С
A) $\frac{17}{52}$	B) $\frac{9}{26}$	C) $\frac{4}{13}$	D) $\frac{5}{13}$		
P(jack or queen or l	race = P(jack) + P(queen) + 1	P(king) + P(ace) = 4/52 + 4/2	52 + 4/52 + 4/52 = 16/52 => 4/13		
5) A single card is a	drawn from a deck. Find	I the probability of	selecting a heart or a 8.	5)	D
A) $\frac{17}{52}$	B) $\frac{2}{13}$	C) $\frac{1}{4}$	D) $\frac{4}{13}$	_	
P(heart or 8) = P(heart or 8)	heart) + $P(8)$ - $P(heart and 8) = 13$	/52 + 4/52 - 1/52 = 16/52 =>	> 4/13 Notice that hearts and 8s are not	t mutually ex	clusive.
6) Two dice are rol	led. Find the probability	of getting doubles	or a sum of 2.	6)	D
A) $\frac{1}{4}$	B) $\frac{2}{9}$	C) $\frac{7}{36}$	D) $\frac{1}{6}$	_	
P(doubles or sum of 2)= I =	P(doubles) + P(sum of 2) - P(doubl 6/36 + 1/36 - 1/36 = 6/36 => 1/6	es and sum of 2) There a (4,4), (5,	re 36 outcomes when rolling two dice. Do 5) and (6,6); a sum of two only occurs in (oubles are (1, 1,1)	1), (2,2), (3,3)
7) In a recent seme	ster at a local university,	520 students enroll	ed in both General	7)	D
Chemistry and C received an A in	calculus I. Of these stude calculus and 34 receive	nts, 70 received an d an A in both gene	A in general chemistry, 81 eral chemistry and calculus	_	
		a an 11 m com gon	in chemistry and calculate		
Find the probabi or calculus or bo	lity that a randomly chos th.	en student received	an A in general chemistry		
A) 0.356	в) 0.29	C) 0.775	D) 0.225		
			~ • • •		

 $\begin{array}{l} P(A \text{ in Chem or Calculus}) = P(A \text{ in Chem}) + P(A \text{ in Calculus}) - P(A \text{ in both: Chem & Calculus}) \\ P(A \text{ in Chem or Calculus}) = \ 70/520 \ \ + \ 81/520 \ \ - \ 34/520 \ \ = \ 117/520 \ \ = > 0.225 \end{array}$

8) The frequency distribution shows the number of medical tests conducted on 30 randomly selected emergency room patients.

Number of tests performed	Number of patients
0	11
1	9
2	6
3	3
4 or more	1

Total = 30

If a patient is selected at random, find these probabilities:

a. The patient had exactly 3 tests done.

b. The patient had at most 2 tests done.

c. The patient has 1 or 2 tests done.

d. The patient had fewer than 3 tests done.

- e. The patient had at least 3 tests done.
- a) P(3 tests done) = 3/30 = 1/10

b) P(at most 2 tests done) = 11/30 + 9/30 + 6/30 = 26/30 = 13/15

- c) P(1 test or 2 tests) = 9/30 + 6/30 = 15/30 = 1/2

- d) P(fewer than 3 tests done) = 11/30 + 9/30 + 6/30 = 26/30 = 13/15
- e) P(at least 3) = 3/30 + 1/30 = 4/30 = 2/15

9) An apartment building has the following distribution of apartments:

	<u>1 bedroom</u>	<u>2 bedroom</u>	<u>3 bedroom</u>	Totals
1st floor	3	0	1	4
2nd floor	1	3	2	6
3rd floor	1	4	1	6

Total 2 bedroom: 7

Grand total: 16

If an apartment is selected at random, what is the probability that it is on the 2nd floor or has 2 bedrooms?

5	13	7	3
A) $\frac{1}{8}$	B) $\frac{16}{16}$	C) $\frac{10}{10}$	$D) \overline{5}$
0	10	10	5

P(Apt in 2nd floor OR it has two bedrooms)= P(2nd floor) + P(2 bedrooms) - P(Apt in 2nd floor AND it has two bedrooms) = 6/16 + 7/16 - 3/16 = 5/8

Α 9)