Practice 20 Ans

1. Find $t_{\alpha/2}$ when n = 25 for the 95% confidence interval for the mean.

```
n = 25, therefore df = n - 1 = 24.
Answer: 2.064
```

TABLE F The t Distribution						
	Confidence Intervals	80%	90%	95%	98%	99%
	One tall, $lpha$	0.10	0.05	0.025	0.01	0.005
d.f.	Two talls, α	0.20	0.10	0.05	0.02	0.01
1		3.078	6.314	12.706	31.821	63.657
2		1.886	2.920	4.303	6.965	9.925
3		1.638	2.353	3.182	4.541	5.841
4		1.533	2.132	2.776	3.747	4.604
5		1.476	2.015	2.571	3.365	4.032
6		1.440	1.943	2.447	3.143	3.707
7		1.415	1.895	2.365	2.998	3.499
8		1.397	1.860	2.306	2.896	3.355
9		1.383	1.833	2.262	2.821	3.250
10		1.372	1.812	2.228	2.764	3.169
11		1.363	1.796	2.201	2.718	3.106
12		1.356	1.782	2.179	2.681	3.055
13		1.350	1.771	2.160	2.650	3.012
14		1.345	1.761	2.145	2.624	2.977
15		1.341	1.753	2.131	2.602	2.947
16		1.337	1.746	2.120	2.583	2.921
17		1.333	1.740	2.110	2.567	2.898
18		1.330	1.734	2.101	2.552	2.878
19		1.328	1.729	2.093	2.539	2.861
20		1.325	1.725	2.086	2.528	2.845
21		1.323	1.721	2.080	2.518	2.831
22		1.321	1.717	2.074	2.508	2.819
23		1.319	1.714	2.069	2.500	2.807
24		1.318	1.711	2.064	2.492	2.797
25		1.316	1.708	2.060	2.485	2.787
26		1.315	1.706	2.056	2.479	2.779
27		1.314	1.703	2.052	2.473	2.771

On Calculators: Use Inverse T

CASIO: F5 for DIST, then F2 for t and F3 for InvT:	<i>TI</i> 84:			
(for area enter $\alpha/2$)	2 nd DIST, then 4: InvT			
Inverse Student-t	(for area enter $\alpha/2$)			
Data :Variable Area :0.025 df :24 Save Res:None Execute	invT area:0.025 df:24 Paste			
None III	Enter			
EXE				
Inverse Student-t xInv =2.06389856	-2.063898542			

2. A sample of size n = 10 is drawn from a normal population. Find the critical value $t_{\alpha/2}$ needed to construct a 90% confidence interval.

n = 10; therefore, df = n - 1 = 9. Answer: 1.833

TABLE F The t Distribution						
	Confidence Intervals	80%	90%	95%	98%	99%
	One tall, $lpha$	0.10	0.05	0.025	0.01	0.005
d.f.	Two talls, α	0.20	0.10	0.05	0.02	0.01
1		3.078	6.314	12.706	31.821	63.657
2		1.886	2.920	4.303	6.965	9.925
3		1.638	2.353	3.182	4.541	5.841
4		1.533	2.132	2.776	3.747	4.604
5		1.476	2.015	2.571	3.365	4.032
6		1.440	1.943	2.447	3.143	3.707
7		1.415	1.895	2.365	2.998	3.499
8		1.397	1.860	2.306	2.896	3.355
9		1.383	1.833	2.262	2.821	3.250
10		1.372	1.812	2.228	2.764	3.169
11		1.363	1.796	2.201	2.718	3.106
12		1.356	1.782	2.179	2.681	3.055
13		1.350	1.771	2.160	2.650	3.012

On Calculators:

<i>TI</i> 84:		
2 nd DIST, then 4: InvT		
(for area enter α/2) invī area:0.10 df:9 Paste		
Enter: invT(0.10,9) -1.383028738		

3. A sample of size n = 14 has a sample mean $\bar{x} = 11.9$ and sample standard deviation s = 2.1. Construct a 99% confidence interval for the population mean, μ .

n = 14 $\bar{x} = 11.9$ s = 2.1 $t_{\alpha/2} = 3.012$ for df = 13, 99% CI

Formula: $\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$... substituting values into the formula: $11.9 \pm 3.012 \frac{2.1}{\sqrt{14}}$

 $(10.2, 13.6) \Rightarrow 10.2 < \mu < 13.6$

On Calculators:

4. A sample of 81 tobacco smokers who recently completed a new smoking-cessation program were asked to rate the effectiveness of the program on a scale of 1 to 10, with 10 corresponding to "completely effective" and 1 corresponding to "completely ineffective". The average rating was 5.6 and the standard deviation was 4.6. Construct a 95% confidence interval for the mean score.

n = 81 $\bar{x} = 5.6$ s = 4.6 $t_{\alpha/2} = 1.99$ Formula: $\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$

$$5.6 \pm 1.99 \frac{4.0}{\sqrt{81}}$$

 $(4.6, 6.6) \Rightarrow 4.6 < \mu < 6.6$

On Calculators:

CACIO, FA for INTE then F2 fort and F1 for 1 St	TIOA.
	1104:
1-Sample tInterval	STAT \rightarrow TESTS 8: TInterval
Data :Variable	TInterval
C-Level :0.95	
Z ∶5.6	Inpt Data Stats
sx :4.6	x:5.6
n :81	Sx:4.6
Save Res None	n:81
None BEIF	C-Level:.95
	Calculate
1-Sample_tInterval	Enter:
Left =4.58285647	
R1901=6.61(14353	
	(4.5829,6.61/1)
5x -4.0 p -01	x=5.6
-01	Sx=4.6
	n=81

5. A food snack manufacturer samples 7 bags of pretzels off the assembly line and weighs their contents. If the sample mean is 15.2 oz. and the sample standard deviation is 0.70 oz., find the 95% confidence interval of the true mean.

```
n = 7, \bar{x} = 15.2 s = 0.70 95% t_{\alpha/2} = 2.447
        Formula: \bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}
                    15.2 \pm 2.447 \frac{0.70}{\sqrt{7}}
          (14.6, 15.8) \Rightarrow 14.6 < \mu < 15.8
CASIO: F4 for INTR, then F2 for t and F1 for 1-S:
                                                                     TI 84:
1-Sample tInterval
Data :Variable
C-Level :0.95
Z :15_2
                                                                     STAT → TESTS 8: TInterval
                                                                                TInterval
                                                                      Inpt:Data Stats
                                                                      x:15.2
               :0.
 sχ
                                                                      Sx:.7
 n
                                                                      n:7
         Res:None
                                                                      C-Level:.95
 None LIST
                                                                      Calculate
EXE
                                                                     Enter:
1-Sample tInterval
Left =14.552608
Right=15.847392
z =15.2
                                                                                TInterval
                                                                      (14.553,15.847)
                                                                      x=15.2
                                                                      Sx=.7
          =0.
sχ
                                                                      n=7
n
```

The prices (in dollars) for a graphing calculator are shown below for 8 online vendors. Estimate the true mean price for this particular calculator with 95% confidence. Sample: 130, 157, 124, 124, 145, 136, 126, 144.

Using formulas: first, find the sample mean, \overline{x} , and the sample standard deviation, s. Count the number of data values: 8

 $\bar{x} = 135.8$ s = 12.0

 $t_{\alpha/2} = 2.365$

Formula: $\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$

 $135.8 \pm 2.365 \frac{12.0}{\sqrt{8}}$

 $(125.8, \ 145.8) \Rightarrow \ 125.8 \ < \mu < 145.8$

On Calculators:

 Six measurements were made of the magnesium ion concentration (in parts per million, or ppm) in a city's municipal water supply, with the following results. It is reasonable to assume that the population is approximately normal. Sample: 175, 177, 175, 180, 138, 138. Construct a 90% confidence interval for the mean magnesium ion concentration.

Using formulas: first, find the sample mean, \bar{x} , and the sample standard deviation, s. Count the number of data values: 6

 $\bar{x} = 163.8$ s = 20.1

 $t_{\alpha/2} = 2.015$

Formula: $\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$

$$163.8 \pm 2.015 \frac{20.1}{\sqrt{6}}$$

 $(147.3, 180.4) \Rightarrow 147.3 < \mu < 180.4$

On Calculators: next page

