1) A normal population has a mean $\mu = 31$ and standard deviation $\sigma = 8$. What proportion of the population is less than 29?

In order to use tables, we need to find the z score:

$$z = \frac{x - \mu}{\sigma} = \frac{29 - 31}{8} = -0.25$$

Therefore, P(x < 29) = P(z < -0.25). By the table:

-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

Answer: 0.4013

On Calculators:

Normal C.D Data Variable Lower -1E+99 Upper 29	Normal C.D P =0.40129367 z:Low=-1.25E+98 z:UP =-0.25	normalcdf lower:-1ε99 upper:29 μ:31 σ:8	normalcdf('1£99.29.31.8) .4012937256
μ μ		Paste	
Save Res:None		<i>T1</i> 84	
CASIO 9750			

2) A normal population has a mean $\mu = 33$ and standard deviation $\sigma = 8$. What is the probability that a randomly chosen value will be greater than 30?

Finding the z score:

$$z = \frac{x-\mu}{\sigma} = \frac{30-33}{8} = -0.375 \approx -0.38$$
 Therefore, $P(x < 30) => P(z < -0.38)$:

-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776	
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121	
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483	
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859	
P(z < -	0.38) =	0.3520									
And	-										
P(z > -	P(z > -0.38) = 1 - 0.3520 = 0.6480										
Answer:	inswer: 0.6480										
Norma Data Lower UPPer o P Save None LI	1 C.D Var 30 1E- 8 33 Kestinor	riable +99 ne	Nori P Z:Li Z:U	mal C.[=0.64 ow=-0.3 P =1.25) 4616976 575 5e+98	lowe uppe μ:33 σ:8 Past	norma r:30 r:⊧99 e <i>TI</i> 84	lcdf n	ormalcdf	(30, £99,3 .64	3,8) 51697127
C	ASTO 97	50									

Notice that the output on the calculators correct to four decimal places is 0.6462

3) The average length of crocodiles in a swamp is 12.5 feet. If the lengths are normally distributed with a standard deviation of 2.1 feet, find the probability that a crocodile is more than 12 feet long.

$$z = \frac{x - \mu}{\sigma} = \frac{12 - 12.5}{2.1} = -0.238 \approx -0.24$$

On the table, P(z < -0.24):

-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247

Therefore, P(z > -0.24) = 1 - 0.4052 = 0.5948

On Calculators:

Normal C.D Data Variable Lower 12 UPPer 1E+99 of 2.1 P 12.5 Save RestNone None LIST	Normal C.D P =0.59409638 z:Low=-0.2380952 z:UP =4.7619E+98	normalcdf lower:12 upper:ε99 μ:12.5 σ:2.1 Paste <i>T1</i> 84	normalcdf(12,E99,12.5,2.1) .5940963403
<i>CASIO</i> 9750			

4) The average gas mileage of a certain model car is 30.0 miles per gallon. If the gas mileages are normally distributed with a standard deviation of 0.75 miles per gallon, find the probability that a car has a gas mileage of between 29.8 and 30.2 miles per gallon.

Finding both z scores, for x = 29.8 and 30.2:

 $z = \frac{x-\mu}{\sigma} = \frac{30.2-30.0}{0.75} = 0.26666 \dots \approx 0.27$ Therefore, $P(x < 30.2) \implies P(z < 0.27) = 0.6064$

TABLE A-2	(continued)	Cumulative	Area	from	the	LEFT
-----------	-------------	------------	------	------	-----	------

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879

$$z = \frac{x - \mu}{\sigma} = \frac{29.8 - 30.0}{0.75} = -0.26666 \dots \approx -0.27$$

 $P(x < 29.8) \implies P(z < -0.27) = 0.3936$

-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

 $P(29.8 < x < 30.2) \Rightarrow P(-0.27 < z < 0.27) = 0.6064 - 0.3936 = 0.2128 \approx 0.213$ to three decimal places.

On Calculators:

Normal C.D Data :Variable Lower :29.8 Upper :30.2 d :0.75 p :30 Save Restione	Normal C.D P =0.21027417 z:Low=-0.2666666 z:UP =0.26666666	normalcdf lower:29.8 upper:30.2 μ:30 σ:0.75 Paste <i>T1</i> 84	normalcdf(29.8.30.2.30.0.♪ .210274064
None LIST		1101	
<i>CASIO</i> 9750			

5) The average height of flowering cherry trees in a certain nursery is 9.5 feet. If the heights are normally distributed with a standard deviation of 1.3 feet, find the probability that a tree is less than 11.5 feet tall.

$$z = \frac{x - \mu}{\sigma} = \frac{11.5 - 9.5}{1.3} = 1.53846 \dots \approx 1.54$$

 $P(x < 11.5) \implies P(z < 1.54)$, by table:

1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621	
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830	
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015	
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177	
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319	
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441	
_											

Answer: 0.9382

On Calculators:

1.3

1.4

.9192

.9207

Normal C.D Data :Variable Lower :-1ɛ+99 Upper :11.5 ơ :1.3 ⊬ :9.5	Normal C.D P =0.93803209 z:Low=-7.692£+98 z:UP =1.53846154	normalcdf lower: -ε99 upper:11.5 μ:9.5 σ:1.3 Paste	normalcdf(⁻E99,11.5.9.5.1↓ .9380320809
Save Re <u>s:None</u>		<i>TI</i> 84	
None ISI			
<i>CASIO</i> 9750			

6) For the standard normal curve, find the z-score that corresponds to the 90th percentile.

гоок пр	on the ta	able for t	ne z scor	e that co	rrespond	as to 90%	% or 0.90	000		
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177

-----000/ 0 0000 + I-+ - I- I £ +

.9222

0.8997 is the closest number to 0.9000. The corresponding z score is 1.28

.9236

On calculators, use Inverse Normal. For the standard normal distribution, use $\mu = 0$ and $\sigma = 1$.

.9251

.9177

.9319

Inverse Normal Data :Variable Tail :Left Area :0.9 o :1 P :0 Save Res:None None LIST	Inverse Normal xInv=1.28155157	invNorm area:0.90 μ:0 σ:1 Paste <i>TI</i> 84	invNorm(0.90.0.1) 1.281551567
CASIO 9750			

.9265

.9279

.9292

.9306

7) The times for completing one circuit of a bicycle course are normally distributed with a mean of 68.0 minutes and a standard deviation of 4.9 minutes. An association wants to sponsor a race but will cut the bottom 25% of riders. In a trial run, what should be the cutoff time?

Answer: To find the cutoff time, you need to find the 25th percentile of the normal distribution. Locate 0.2500 in the body of the table. The corresponding z-score value in this case is -0.67, since 0.2514 is the closest value to 0.2500.

Solving for x in the formula for the z-score: $x = \mu + z \cdot \sigma = 68 + (-0.67)(4.9) = 64.7$ minutes. **On Calculators**, Inv Normal:

Inverse Normal Data :Variable Tail :Left Area :0.25 o :4.9 P :68 Save Res None None [15] CASIO 9750	Inverse Normal xInv=64.6950002	InvNorm area:.25 µ:68 σ:4.9 Paste <i>T1</i> 84	invNorm(.25,68,4.9) 64.69500023
---	-----------------------------------	---	------------------------------------

8) A bottler of drinking water fills plastic bottles with a mean volume of 999 milliliters (mL) and standard deviation 7 mL. The fill volumes are normally distributed. What is the probability that a bottle has a volume greater than 992 mL?

 $z = \frac{x - \mu}{\sigma} = \frac{992 - 999}{7} = -1 \quad \therefore \quad P(x > 992) \Rightarrow 1 - P(z < -1) = 1 - 0.1587 = 0.8413$

-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867

On Calculators:

Normal C.D Data Variable Lower 992 Upper 1E+99 0 7	Normal C.D P =0.84134474 z:Low=-1 z:UP =1.4286E+98	normaledf lower:992 upper:£99 µ:999 g:7	normalcdf(992.£99.999.7) .8413447404
P :999 Save Res:None		Paste	
CASIO 9750		7784	

9) In order to be accepted into a certain top university, applicants must score within the top 5% on the SAT exam. Given that the exam has a mean of 1000 and a standard deviation of 200, what is the lowest possible score a student needs to qualify for acceptance into the university?

To the left of the top 5% we have the bottom 95%. Since tables includes areas to the left, we need to locate 0.9500 in the table's body. It corresponds to a z-score of 1.64.

Therefore, $x = \mu + z \cdot \sigma = 1000 + 1.64 (200) = 1328$

1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	* .9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633

Inverse Normal Data :Variable Tail :Left Area :0.95 0 :200 P :1000	Inverse Normal xInv=1328.97073	BinvNorm area:.95 µ:1000 σ:200 Paste <i>TI</i> 84	invNorm(.95,1000,200) 1328.970725
<i>CASIO</i> 9750			