1) When 2 dice are rol	led, find the probability of	of getting a sum of 3.		1)	Α	
A) $\frac{1}{18}$	B) $\frac{33}{36}$	C) $\frac{5}{8}$	D) $\frac{5}{54}$	_		
A sum of 3 occurs when 1st die	e showing 1 and the other showing 2	or vice versa: That is (1,2) or (2,1) o	out of 36 possible outcomes: 2/3	6 => 1/18		
2) Cards numbered 1-3 are in order?	8 are shuffled and dealt f	ace down. What is the	probability that they	2)	В	
A) 0.00001240	в) 0.00002480	C) 0.00039683	D) 0.00004960	0220 - 0	0000240015	
They all in order only occurs	s in one way; the total number of po	ssible arrangements is given by 8	3! or 8P8 = 40,320 Prob = 1/4	0320 => 0	.0000248015	
3) The numbers 1 throusinto a box. Then, 4 of	of these slips are drawn a	rate slips of paper, and it random.	the slips are placed	3) _	<u>D</u>	
What is the probabile A) 0.01428 Choosing the numbers in that by 8P4 ==> 1680 ; therefore	lity that the drawn slips a B) 0.01429 t order (1, 2, 3, 4) only occurs in on , the Prob = 1/1680 ==> 0.0005952	tre "1", "2", "3", and "4 C) 0.34296 way. The total number of ways	", in that order? D) 0.000595 s of choosing 4 out of 8, being	the order re	elevant is given	
4) A bookcase contain	s 2 statistics books and 5	biology books. If 2 bo	oks are chosen at	4)	A	
random, the chance	that both are statistics bo	ooks is				
A) $\frac{1}{21}$ Choosing books in this scenario The total number of possible ou	B) $\frac{10}{21}$ the order is irrelevant. In how many tromes is given by choosing 2 books	C) $\frac{10}{11}$ ways can we choose 2 stat books f from a total of $7 \implies 7C2=21$ Pr	D) $\frac{1}{11}$ from a 2 of them available? 2C2 = rob = 1/21	=1		
5) Three statistics prof	essors and seven chemist	try professors are availa	able to be advisors to	5)	В	
a student organization	on. The student organiza	tion needs two of the p	professors to be	-		
advisors. If each professor has an equal chance of being selected, what is the probability						
that both professors	are chemistry professors	?				
A) 0.233 Order is irrelevant. Choosing 2	B) 0.467 2 Chem prof out of 7 ==> 7C2 =21	C) 0.111 Total number of possible outcom	D) 0.100 es: choosing 2 out of 10 prof in	total: 100	2 =45	
6) A committee consis	t of 7 women and 10 mer	n. Three members are c	chosen as officers.	6)	С	
What is the probabil	lity that all three officers	are women?		_		
A) 0.1765 Order is irrelevant. In how mar 17C3 = 680 Prob = $35/680 =$	B) 0.01163 by ways can we choose 3 women out	C) 0.0515 of 7 ? => 7C3 = 35; total number	D) 0.0698	ng 3 out of	17 in total:	
7) In a company there	are 8 executives: 6 wome	en and 2 men. 2 are sel	ected to attend a	7)	D	
management semina	ar. Find the probability th	at 1 men and 1 womar	will be selected.	-		
A) ≈ 0.0400	B) ≈ 0.0833	C) ≈ 0.2500	D) 0.4286			
Choosing 1 man out of 2 and 1	woman out of $6 ==> 2C1 \times 6C1 = 12$	2 Total number of possible selec	tions: $8C2 = 28 = Prob = 1$	2/28 = 0.42	.857	
8) A package contains 10 resistors, 2 of which are defective. If 3 are selected, find the						
probability of getting 1 defective resistor.						
A) ≈ 0.0167	B) ≈ 0.2333	C) ≈ 0.3571	D) $pprox 0.4667$			
Notice that if we select 3 and 1	l is defective, the other two selected a	re good ones (there are 8 in good c	onditions):			

In how many ways can we select 1 defective of 2 and 2 good ones out of 8? $2C1 \times 8C2 = 56$ Total number of possible selections: 10C3 = 120

Prob = 56/120 = 0.466666...

9) A football team consists of 20 freshmen and 20 sophomores, 12 juniors, and 5 seniors. Four players are selected at random to serve as captains. Find the probability that there are 2 sophomores and 2 freshmen. 0 000

1			
A) ≈ 0.3950	B) $pprox 0.2000$	C) $pprox 0.0005$	D) $pprox 0.0914$

In how many ways can we choose 2 sophomores from 20 and 2 freshmen from 20? $20C2 \times 20C2 = 36100$ The total number of possible selections are 4 out of 57: 57C4 = 395010Prob = 36100/395010 = 0.091390...