Confidence Intervals:

Based on a sample, calculate the interval of values in which the population parameter (mean, proportion, standard deviation) may lie with a degree of certainty. This degree of certainty (level of confidence) is given as a percentage or the equivalent decimal. The most used confidence intervals are 80%, 90%, 95%, 98% and 99%.

The population parameter lies in between the sample point estimate plus or minus an error:

Sample point estimate $\pm Error$

The three confidence intervals in STA2023:

1. Confidence Interval for the population mean, population standard deviation σ , known.

 $\bar{x} \pm Error$

$$\bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

2. Confidence Interval for the population mean, population standard deviation σ , unknown. Use the sample standard deviation (for a normal distributed variable), use the *t* distribution.

$$\bar{x} \pm t_{\alpha/2} \cdot \frac{\mathrm{s}}{\sqrt{n}}$$

3. Confidence Interval for the population proportion:

$$\hat{p} \pm z_{\alpha/2} \cdot \sqrt{rac{\hat{p} \cdot \hat{q}}{n}}$$
 where $\hat{q} = 1 - \hat{p}$

Sample size for means:	Sample size por proportions:
$n = \left(\frac{z_{\alpha/2} \cdot \sigma}{E}\right)^2$	$n = \hat{p} \cdot \hat{q} \left(\frac{Z_{\alpha/2}}{E}\right)^2$
	If \hat{p} unknown, use 0.5

Critical values, $Z_{\alpha/2}$

In short:			
90%, $Z_{\alpha/2} = 1.645$	95%, $Z_{\alpha/2} = 1.96$	50 98%, $Z_{\alpha/2} =$	2.326 99%, $Z_{\alpha/2} = 2.576$

TABLE A-3	t Distribution: Critical t Values				
	Area in One Tail 0.005 0.01 0.025 0.05 0.10				0.10
Degrees of	99%CI	98%CI	aa in Two Tails	90%CI	80%CI
Freedom	0.01	0.02	0.05	0.10	0.20
1	63.657	31.821	12,706	6.314	3.078
2	9.925	6.965	4.303	2.920	1.886
3	5.841	4.541	3.182	2.353	1.638
4	4.604	3.747	2.776	2.132	1.533
5	4.032	3.365	2.571	2.015	1.476
6	3.707	3.143	2.447	1.943	1.440
7	3.499	2.998	2.365	1.895	1.415
8	3.355	2.896	2.306	1.860	1.397
9	3.250	2.821	2.262	1.833	1.383
10	3.169	2.764	2.228	1.812	1.372
11	3.106	2.718	2.201	1.796	1.363
12	3.055	2.681	2.179	1.782	1.356

See complete table at the end of this document.

Degrees of freedom, df = n - 1 where *n* is the sample size.

Examples:

Question 1

The lengths, in inches, of adult corn snakes are normally distributed with a population standard deviation of 8 inches and an unknown population mean. A random sample of 25 snakes is taken and results in a sample mean of 58 inches. Find a 99% confidence interval estimate for the population mean.

 $\bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$ 58 ± 2.576 $\cdot \frac{8}{\sqrt{25}}$ 58 ± 4.1216

by subtracting and adding E = 4.1216, yields the 99% Conf Interval: (53.88, 62.12)

Interpretation:

We can estimate with 99% confidence that the true population mean length of adult corn snakes is between 53.88 and 62.12 inches.

Question 2

Suppose the scores of a standardized test are normally distributed. If the population standard deviation is 3 points, what minimum sample size is needed to be 90% confident that the sample mean is within 2 points of the true population mean?

Sample size,

$$n = \left(\frac{z_{\alpha/2} \cdot \sigma}{E}\right)^2$$
 Therefore, $n = \left(\frac{1.645 \cdot 3}{2}\right)^2 = 6.08 \ rounded \ (always) \ up = 7$

Question 3

The weekly salaries of sociologists in the United States are normally distributed and have a known population standard deviation of 425 dollars and an unknown population mean. A random sample of 22 sociologists is taken and gives a sample mean of 1520 dollars.

Find the margin of error for the confidence interval for the population mean with a 98% confidence level.

ME, margin of error given by
$$Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$
 Therefore, ME = $2.326 \cdot \frac{425}{\sqrt{22}} = 210.76$

Question 4

The commute times for workers in a city are normally distributed with an unknown population mean and standard deviation.

If a random sample of 20 workers is taken and results in a sample mean of 21 minutes and sample standard deviation of 6 minutes, find a 95% confidence interval estimate for the population mean using the Student's t-distribution.

df	$t_{0.10}$	$t_{0.05}$	$t_{0.025}$	$t_{0.01}$	$t_{0.005}$
•••					
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831

Find the margin of error, for a 95% confidence interval estimate for the population mean using the Student's t-distribution.

 $ar{x} \pm t_{lpha/2} \cdot rac{\mathrm{s}}{\sqrt{n}}$ Margin of error, ME given by $t_{lpha/2} \cdot rac{\mathrm{s}}{\sqrt{n}}$

Therefore ME = $2.093 \cdot \frac{6}{\sqrt{20}} = 2.8081 = 2.81$ Interval, $\bar{x} \pm Error$ or 21 ± 2.81

by subtracting and adding E, yields the 95% Confidence interval: (18.19, 23.81)

Question 5

Emma wants to estimate the percentage of people who use public transportation in a city. She surveys 140 individuals and finds that 62 use public transportation. Find the confidence interval for the population proportion with a 99% confidence level.

Answer: This a proportion interval. Find \hat{p} first:

$$\hat{p} = \frac{x}{n} = \frac{62}{140} = 0.4429$$
 and $\hat{q} = 1 - \hat{p}$ Therefore, $\hat{q} = 1 - 0.4429 = 0.5571$

 $\hat{p} \pm z_{\alpha/2} \cdot \sqrt{rac{\hat{p} \cdot \hat{q}}{n}}$ substituting values, becomes:

 $0.4429 \pm 2.576 \cdot \sqrt{\frac{0.4429 \times 0.5571}{140}}$

 0.4429 ± 0.1081

(0.335, 0.551)

Question 6

Suppose a clothing store wants to determine the current percentage of customers who are over the age of forty.

How many customers should the company survey in order to be 90% confident that the estimated (sample) proportion is within 4 percentage points of the true population proportion of customers who are over the age of forty?

Answer: Sample size por proportions:

 $n = \hat{p} \cdot \hat{q} \left(\frac{z_{\alpha/2}}{E}\right)^2$ since \hat{p} is unknown (some times researchers used a previous study result, that is the case in which \hat{p} is known; otherwise, like in this case, use 0.5; the $z_{\alpha/2}$ = 1.645 for a 90% CI, 4% as decimal, E = 0.04; substituting values:

$$n = 0.5 \cdot 0.5 \left(\frac{1.645}{0.04}\right)^2 = 422.81 = 423$$

TABLE A-3	t Distribution: Critical t Values				
		L	Area in One Tail		
	0.005	0.01	0.025	0.05	0.10
Degrade of	99%CI	98%CI,	95%CI.	90%CI	80%CI
Freedom	0.01	0.02	0.05	0.10	0.20
1	63.657	31.821	12.706	6.314	3.078
2	9.925	6.965	4.303	2.920	1.886
3	5.641	4.541 7 747	3.182	2.353	1.038
5	4.004	7 765	2.770	2.132	1.555
5	4.032	3.305 7147	2.3/1	2.015	1.470
7	3.707	2 998	2.447	1.945	1.440
2	3. 4 33 7.755	2.990	2,305	1.850	1.415
9	3.355	2.830	2.300	1.800	1.397
10	3.250	2.021	2.202	1,855	1.303
10	3.105	2.704	2.220	1.012	1.372
12	3.000	2.710	2.201	1.790	1.303
12	3.033	2.001	2.17.9	1.762	1.350
13	2.012	2.650	2.100	1.771	1.350
14	2.977	2.624	2.145	1.701	1.345
15	2.947	2.002	2.131	1.755	1.341
10	2.921	2.565	2.120	1.740	1.337
17	2.030	2.507	2.110	1.740	1.333
18	2.070	2.552	2.101	1.734	1.330
19	2.001	2.539	2.095	1.729	1.328
20	2.645	2.520	2.080	1.725	1.325
21	2.031	2.510	2.080	1.721	1.323
22	2.019	2.508	2.074	1.717	1.321
23	2.007	2.500	2.009	1.714	1.319
24	2.797	2.492	2.064	1.711	1.310
25	2.787	2.405	2.000	1.706	1.310
20	2.773	2.479	2.050	1.700	1.313
27	2.771	2.473	2.032	1.703	1.314
20	2.705	2.407	2.045	1.701	1.313
30	2.750	2.402	2.043	1.099	1.311
30	2.730	2.457	2.042	1.696	1309
37	2.744	2.433	2.040	1.694	1.309
32	2.733	2.445	2.035	1.692	1.303
33	2.735	2.445	2.032	1.691	1.300
34	2.720	2.441	2.032	1.690	1306
36	2.724	2.430	2.030	1.638	1306
30	2 715	2.434	2.026	1.687	1305
38	2.712	2.429	2.024	1.686	1.304
39	2,708	2.426	2.023	1.685	1.304
40	2,704	2.423	2.021	1.684	1.303
45	2.690	2.423	2.014	1.679	1.301
50	2.678	2 403	2.009	1.676	1299
60	2,660	2 390	2.000	1.671	1296
70	2.648	2 381	1994	1.667	1294
80	2.639	2.331	1.990	1.664	1297
90	2.632	2 368	1987	1.662	1 2 91
100	2.626	2 364	1.984	1.660	1290
200	2.601	2 3 4 5	1.972	1653	1286
300	2.001	2.345	1968	1650	1.200
400	2 588	2.335	1966	1649	1284
500	2.500	2.330	1965	1648	1.204
1000	2 581	2.334	1962	1646	1282
2000	2.501	2.330	1 961	1646	1.202
Large	2.576	2.320	1960	1645	1282
Large	2.070	2.020	1.000	1.045	1.202
L					

large n t becomes z

99% 98% 95% 90% 80%