Confidence Intervals:

Based on a sample, calculate the interval of values in which the population parameter (mean, proportion, standard deviation) may lie with a degree of certainty. This degree of certainty (level of confidence) is given as a percentage or the equivalent decimal.

The most used confidence intervals are 80%, 90%, 95%, 98% and 99%.

The population parameter lies in between the sample point estimate plus or minus an error:

Sample point estimate $\pm Error$

The three confidence intervals in STA2023:

1. Confidence Interval for the population mean, population standard deviation σ , known.

 $\bar{x} \pm Error$

$$\bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

2. Confidence Interval for the population mean, population standard deviation σ , unknown. Use the sample standard deviation (for a normal distributed variable), use the *t distribution*.

$$\bar{x} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

3. Confidence Interval for the population proportion:

$$\hat{p} \pm z_{lpha/2} \cdot \sqrt{rac{\hat{p} \cdot \hat{q}}{n}}$$
 where $\hat{q} = 1 - \hat{p}$

Sample size for means: Sample size por proportions: $n = \left(\frac{z_{\alpha/2} \cdot \sigma}{E}\right)^2 \qquad \qquad n = \hat{p} \cdot \hat{q} \left(\frac{z_{\alpha/2}}{E}\right)^2$ If \hat{p} unknown, use 0.5

Critical values, $Z_{\alpha/2}$:

90%,
$$Z_{\alpha/2}=1.645$$
 95%, $Z_{\alpha/2}=1.960$ 98%, $Z_{\alpha/2}=2.326$ 99%, $Z_{\alpha/2}=2.576$

T-Critical values:

See complete table at the end of this document.

Degrees of freedom, df = n - 1 where n is the sample size.

	Confidence intervals	80%	90%	95%	98%	99%
	One tail, \alpha	0.10	0.05	0.025	0.01	0.005
d.f.	Two tails, α	0.20	0.10	0.05	0.02	0.01
1		3.078	6.314	12.706	31.821	63.657
2		1.886	2.920	4.303	6.965	9.925
3		1.638	2.353	3.182	4.541	5.841
4		1.533	2.132	2.776	3.747	4.604
5		1.476	2.015	2.571	3.365	4.032
6		1.440	1.943	2.447	3.143	3.707
7		1.415	1.895	2.365	2.998	3.499
8		1.397	1.860	2.306	2.896	3.355
9		1.383	1.833	2.262	2.821	3.250
10		1.372	1.812	2.228	2.764	3.169
11		1.363	1.796	2.201	2.718	3.106
12		1.356	1.782	2.179	2.681	3.055
13		1.350	1.771	2.160	2.650	3.012
14		1.345	1.761	2.145	2.624	2.977
15		1.341	1.753	2.131	2.602	2.947
16		1.337	1.746	2.120	2.583	2.921
17		1.333	1.740	2.110	2.567	2.898
18		1.330	1.734	2.101	2.552	2.878
19		1.328	1.729	2.093	2.539	2.861
20		1.325	1.725	2.086	2.528	2.845

1. Examples 1: Z-Test for mean (sigma known)

The lengths, in inches, of adult corn snakes are normally distributed with a population standard deviation of 8 inches and an unknown population mean. A random sample of 25 snakes is taken and results in a sample mean of 58 inches. Find a 99% confidence interval estimate for the population mean.

$$\bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$
 58 \pm 2.576 \cdot \frac{8}{\sqrt{25}} \quad 58 \pm 4.1216

by subtracting and adding E=4.1216, yields the 99% Conf Interval: (53.88, 62.12)

Interpretation:

We can estimate with 99% confidence that the true population mean length of adult corn snakes is between 53.88 and 62.12 inches.

2. Example 2: T-Test for mean, sample standard deviation known:

The commute times for workers in a city are normally distributed with an unknown population mean and standard deviation.

If a random sample of 20 workers is taken and results in a sample mean of 21 minutes and sample standard deviation of 6 minutes, find a 95% confidence interval estimate for the population mean using the Student's t-distribution.

	Confidence intervals	80%	90%	95%
	One tail, α	0.10	0.05	0.025
d.f.	Two tails, α	0.20	0.10	0.05
1		3.078	6.314	12.706
2		1.886	2.920	4.303
3		1.638	2.353	3.182
4		1.533	2.132	2.776
5		1.476	2.015	2.571
6		1.440	1.943	2.447
7		1.415	1.895	2.365
8		1.397	1.860	2.306
9		1.383	1.833	2.262
10		1.372	1.812	2.228
11		1.363	1.796	2.201
12		1.356	1.782	2.179
13		1.350	1.771	2.160
14		1.345	1.761	2.145
15		1.341	1.753	2.131
16		1.337	1.746	2.120
17		1.333	1.740	2.110
18		1.330	1.734	2.101
19		1.328	1.729	2.093
20		1.325	1.725	2.086

Find the margin of error, for a 95% confidence interval estimate for the population mean using the student's t-distribution. By the table, for n=20, df=19: $t_{\alpha/2}=2.093$

$$\bar{x} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

$$21 \pm 2.81$$

by subtracting and adding E, yields the 95% Confidence interval: (18.19, 23.81) or 18.19 < μ < 23.81

3. Example 3: 1-Proportion Z-Test.

Emma wants to estimate the percentage of people who use public transportation in a city. She surveys 140 individuals and finds that 62 use public transportation. Find the confidence interval for the population proportion with a 99% confidence level.

Answer: This a proportion interval. Find \hat{p} first:

$$\hat{p} = \frac{x}{n} = \frac{62}{140} = 0.4429$$
 and $\hat{q} = 1 - \hat{p}$ Therefore, $\hat{q} = 1 - 0.4429 = 0.5571$

$$\hat{p} \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{p} \cdot \hat{q}}{n}}$$
 substituting values, becomes:

$$0.4429 \pm 2.576 \cdot \sqrt{\frac{0.4429 \times 0.5571}{140}}$$

$$0.4429 \pm 0.1081$$

$$0.335$$

4. Example 4: Sample size for proportion:

Suppose a clothing store wants to determine the current percentage of customers who are over the age of forty.

How many customers should the company survey in order to be 90% confident that the estimated (sample) proportion is within 4 percentage points of the true population proportion of customers who are over the age of forty?

Answer: Sample size por proportions:

 $n=\hat{p}\cdot\hat{q}\left(\frac{z_{\alpha/2}}{E}\right)^2$ since \hat{p} is unknown (some times researchers used a previous study result, that is the case in which \hat{p} is known; otherwise, like in this case, use 0.5; the $z_{\alpha/2}$ = 1.645 for a 90% CI, 4% as decimal, E=0.04; substituting values:

$$n = 0.5 \cdot 0.5 \left(\frac{1.645}{0.04}\right)^2 = 422.81 = 423$$