mystatclass.com

Measures of central tendency: mean, median, mode, midrange.

Mean: average value. **Median**: middle value. **Mode**: most frequent value. **Midrange**: Average of the two extremes: max and min values.

Sample 1: 0, 11, 17, 28, 40.			
Mean	$\bar{x} = \frac{\sum x}{n}$	$\bar{x} = \frac{0 + 11 + 17 + 28 + 40}{5} = 19.2$	
Median	Middle value	0, 11, 17, 28, 40. $med = 17$	
Mode	Most freq value	None	
Midrange	$=\frac{max+min}{2}$	$\frac{40+0}{2} = 20$	

Sample 2: 6, 9, 13, 14, 20, 20, 20, 24, 33, 33				
Mean	$\bar{x} = \frac{\sum x}{n}$	$\bar{x} = \frac{6+9+13+14+20+20+20+24+33+33}{10} = 19.2$		
Median	Middle value	6, 9, 13, 14, <u>20, 20</u> , 20, 24, 33, 33 $med = \frac{20+20}{2} = 20$		
Mode	Most freq value	20		
Midrange	$=\frac{max+min}{2}$	$\frac{33+6}{2} = 19.5$		

Measures of Variation: Range, Variance, Standard deviation, Coefficient of Variation.

Sample 1: 0, 11, 17, 28, 40.				
Variance	$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$	$s^{2} = \frac{(0 - 19.2)^{2} + (11 - 19.2)^{2} + (17 - 19.2)^{2} + (28 - 19.2)^{2} + (40 - 19.2)^{2}}{4}$ $= 237.7$		
Standard Deviation	$s = \sqrt{\frac{\sum(x - \bar{x})^2}{n - 1}}$	$s = \sqrt{\frac{(0-19.2)^2 + (11-19.2)^2 + (17-19.2)^2 + (28-19.2)^2 + (40-19.2)^2}{4}} = 15.4$		
Coefficient of Variation	$CV = \frac{s}{\overline{x}} \cdot 100$	$CV = \frac{15.4}{19.2} \cdot 100 = 80.2\%$		
Range	Max-Min	40 - 0 = 40		

Using the alternative formula for Variance and the Standard deviation. Both formulas are algebraically equivalent:

Sample 2: 6, 9, 13, 14, 20, 20, 20, 24, 33, 33				
Variance	$s^{2} = \frac{n \sum x^{2} - (\sum x)^{2}}{n(n-1)}$	sum of $x^2 = 6^2 + 9^2 + 13^2 + 14^2 + 3(20^2) + 24^2 + 2(33^2) = 4436$ sum of $x = 6 + 9 + 13 + 14 + 3(20) + 24 + 2(33) = 192$ $s^2 = \frac{10(4436) - (192)^2}{10(9)} = 83.3$		
Standard Deviation	$s = \sqrt{\frac{n\sum x^2 - (\sum x)^2}{n(n-1)}}$	$s = \sqrt{\frac{10(4426) - 192^2}{10(9)}} = 9.1$		
Coefficient of Variation	$CV = \frac{s}{\overline{x}} \cdot 100$	$CV = \frac{9.1}{19.2} \cdot 100 = 47.4\%$		
Range	Max-Min	33 - 6 = 27		

Notice that while both samples have the same mean, the variation within the dataset is higher for sample 1.

Press Enter: 1-Var Stats

We are working on one variable Statistics and the data was entered in List 1; therefore, keep 1-Var Stats, do not specify List 1: Press Enter again:

Results:

 \bar{x} : Sample mean Sx: Sample Standard Deviation σx: population Standard Deviation

Scroll down using the arrow keys to obtain: 1-Var Stats 11n=5 minX=0 Q1=5.5 Med=17

Q3=34 maxX=40

MinX: minimum *Q*₁: *First Quartile* Med: median Q_3 : Third Quartile MaxX: maximum

For two lists:

L1	L2
0HNM	NINHR

Press STAT, then enter L1,L2: 1-Var Stats Li,L 2

Press enter to obtain 1-Var Stats

We are working on 1 Variable Statistics. We need to check SET, the corresponding key is F6. SET deals with how the user set up the lists. We have only List 1; therefore, press F6:

This is what we need. The frequency of each data value on list 1 is 1. This is not a frequency table; in that case we would have List 2 updated. So, if you see this:

1Var	XList	:List1
iVar	Freq	:List2
2Var	XList	:List1
2Var	YList	:List2
2Var	Freq	:1

1 1997

Med Q3

Mod

It means that you have a List2 of frequencies. Since we don't have it in this case, press F1 which correspond to 1. Now press EXIT key,

=5.5 =17 =34 =40 maxX =0

(Description of variables same as TI, see left column)

