Review Sheet for Test 2

These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence of a topic does not imply that it won't appear on the test.

1. Find the unit tangent and unit normal for the curve $y = \frac{1}{2}$ $rac{1}{3}x^3 + x^2 + 3x + \frac{2}{3}$ $\frac{2}{3}$ at the point $(1,5)$.

2. For the curve

$$
\vec{r}(t) = \left\langle \frac{1}{3}t^3 + 1, t^2 + 1, 2t + 5 \right\rangle,
$$

find the unit tangent, the unit normal, the binormal, and the osculating circle at $t = 1$.

3. Find the domain and range of
$$
f(x, y, z) = \frac{z^2 + 1}{\sqrt{1 - x^2 - y^2}}
$$
.

4. (a) Show that $\lim_{(x,y)\to(0,0)}$ $3x^4 + 5y^4$ $\frac{3x+9y}{x^4+3x^2y^2+y^4}$ is undefined.

(b) Show that $\lim_{(x,y)\to(0,0)}$ x^4y^4 $\frac{d^2y}{(x^4+3x^2y^2+y^4)}$ is defined and find its value.

5. For what points (x, y) is the function $f(x, y) = \ln(xy)$ continuous?

6. Find the tangent plane to the surface

$$
x = u^2 - 3v^2
$$
, $y = \frac{4u}{v}$, $z = 2u^2v^3$

for $u = 1$ and $v = 1$.

7. Use a linear approximation to $z = f(x, y) = x^2 - y^2$ at the point $(2, 1)$ to approximate $f(1.9, 1.1)$.

8. Find the gradient of $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2 + 1}}$ and show that it always points toward the origin.

9. Find the rate of change of $f(x, y, z) = xy - yz + xz$ at the point $(1, -2, -2)$ in the direction toward the origin. Is f increasing or decreasing in this direction?

10. Calvin Butterball sits in his go-cart on the surface

$$
z = x^3 - 2x^2y + x^2 + xy^2 - 2y^3 + y^2
$$

at the point $(1, 1, 0)$. If his go-cart is pointed in the direction of the vector $\vec{v} = \langle 15, -8 \rangle$, at what rate will it roll downhill?

11. Find the tangent plane to $x^2 - y^2 + 2yz + z^5 = 6$ at the point $(2, 1, 1)$.

12. The rate of change of $f(x, y)$ at $(1, -1)$ is 2 in the direction toward $(5, -1)$ and is $\frac{6}{5}$ in the direction of the vector $\langle -3, -4 \rangle$. Find $\nabla f(1, -1)$.

13. Let r and θ be the standard polar coordinates variables. Use the Chain Rule to find $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$, for $f(x, y) = xe^{x} + e^{y}.$

14. Suppose $u = f(x, y, z)$ and $x = \phi(s, t), y = \psi(s, t), z = \mu(s, t)$. Use the Chain Rule to write down an expression for $\frac{\partial u}{\partial t}$.

15. Suppose that $w = f(x, y)$, $x = g(r, s, t)$, and $y = h(r, t, s)$. Use the Chain Rule to find an expression for $\partial^2 f$ $\frac{\partial^2}{\partial t^2}$.

16. Locate and classify the critical points of

$$
z = x^2y - 4xy + \frac{1}{3}y^3 - \frac{3}{2}y^2.
$$

17. Find the points on the sphere $x^2 + y^2 + z^2 = 36$ which are closest to and farthest from the point $(4, -3, 12)$.

Solutions to the Review Sheet for Test 2

1. Find the unit tangent and unit normal for the curve $y = \frac{1}{2}$ $\frac{1}{3}x^3 + x^2 + 3x + \frac{2}{3}$ $\frac{2}{3}$ at the point $(1,5)$.

The curve may be parametrized by

$$
\vec{r}(t) = \left\langle t, \frac{1}{3}t^3 + t^2 + 3t + \frac{2}{3} \right\rangle.
$$

Thus,

$$
\vec{r}'(t) = \langle 1, t^2 + 2t + 3 \rangle, \quad \vec{r}'(1) = \langle 1, 6 \rangle, \quad \|\vec{r}'(1)\| = \sqrt{37}.
$$

The unit tangent is

$$
\vec{T}(1) = \frac{1}{\sqrt{37}} \langle 1, 6 \rangle.
$$

For a plane curve, I can use geometry to find the unit normal. By swapping components and negating one of them, I can see that the following unit vectors are perpendicular to $\tilde{T}(1)$:

$$
\frac{1}{\sqrt{37}}\langle -6, 1 \rangle, \quad \frac{1}{\sqrt{37}}\langle 6, -1 \rangle.
$$

Graph the curve near $x = 1$:

From the graph, I can see that the unit normal at $x = 1$ must point up and to the left. This means that the x-component must be negative and the y -component must be positive. Hence,

$$
\vec{N}(1) = \frac{1}{\sqrt{37}} \langle -6, 1 \rangle.
$$

Note that you can't use this trick in 3 dimensions, since there are infinitely many vectors perpendicular to the unit tangent. $\quad \Box$

2. For the curve

$$
\vec{r}(t) = \left\langle \frac{1}{3}t^3 + 1, t^2 + 1, 2t + 5 \right\rangle,
$$

find the unit tangent, the unit normal, the binormal, and the osculating circle at $t = 1$.

$$
\vec{r}'(t) = \langle t^2, 2t, 2 \rangle, \quad \vec{r}'(1) = \langle 1, 2, 2 \rangle, \quad \|\vec{r}'(1)\| = 3.
$$

The unit tangent at $t = 1$ is

$$
\vec{T}(1) = \frac{1}{3}\langle 1, 2, 2 \rangle.
$$

Now

$$
\|\vec{r}'(t)\| = \sqrt{t^4 + 4t^2 + 4} = \sqrt{(t^2 + 2)^2} = t^2 + 2,
$$

so

$$
\vec{T}(t) = \left\langle \frac{t^2}{t^2 + 2}, \frac{2t}{t^2 + 2}, \frac{2}{t^2 + 2} \right\rangle.
$$

Hence,

$$
\vec{T}'(t) = \left\langle \frac{4t}{(t^2 + 2)^2}, \frac{4 - 2t^2}{(t^2 + 2)^2}, -\frac{4t}{(t^2 + 2)^2} \right\rangle,
$$

$$
\vec{T}'(1) = \left\langle \frac{4}{9}, \frac{2}{9}, -\frac{4}{9} \right\rangle = \frac{2}{9} \langle 2, 1, -2 \rangle,
$$

$$
\|\vec{T}'(1)\| = \frac{2}{9} \sqrt{2^2 + 1^2 + (-2)^2} = \frac{2}{3}.
$$

The unit normal at $t = 1$ is

$$
\vec{N}(1) = \frac{1}{2} \frac{2}{9} \langle 2, 1, -2 \rangle = \frac{1}{3} \langle 2, 1, -2 \rangle.
$$

The binormal at $t = 1$ is

$$
\vec{T}(1) \times \vec{N}(1) = \frac{1}{9} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 2 \\ 2 & 1 & -2 \end{vmatrix} = \frac{1}{9} \langle -6, 6, -3 \rangle = \frac{1}{3} \langle -2, 2, -1 \rangle.
$$

Next, I'll compute the curvature.

$$
\vec{r}'(t) = \langle t^2, 2t, 2 \rangle
$$
, so $\vec{r}''(t) = \langle 2t, 2, 0 \rangle$, and $\vec{r}''(1) = \langle 2, 2, 0 \rangle$.

So

$$
\vec{r}'(1) \times \vec{r}''(1) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 2 \\ 2 & 2 & 0 \end{vmatrix} = \langle -4, 4, -2 \rangle \text{ and } ||\vec{r}'(1) \times \vec{r}''(1)|| = \sqrt{16 + 16 + 4} = 6.
$$

The curvature is

$$
\kappa = \frac{\|\vec{r}'(1) \times \vec{r}''(1)\|}{\|\vec{r}'(1)\|^3} = \frac{6}{3^3} = \frac{2}{9}.
$$

The point on the curve is $\vec{r}(1) = \left(\frac{4}{3}\right)$ $\left(\frac{4}{3}, 2, 7\right)$. Therefore the equation of the osculating circle is

$$
(x, y, z) = \left\langle \frac{4}{3}, 2, 7 \right\rangle + \frac{9}{2} \cdot \frac{1}{3} \langle 2, 1, -2 \rangle + \frac{9}{2} \cdot \frac{1}{3} \langle 1, 2, 2 \rangle \cos t + \frac{9}{2} \cdot \frac{1}{3} \langle 2, 1, -2 \rangle \sin t =
$$

$$
\left\langle \frac{13}{3} + \frac{3}{2} \cos t + 3 \sin t, \frac{7}{2} + 3 \cos t + \frac{3}{2} \sin t, 4 + 3 \cos t - 3 \sin t \right\rangle.
$$

3. Find the domain and range of $f(x, y, z) = \frac{z^2 + 1}{z^2 + 1}$ $\frac{z+1}{\sqrt{1-x^2-y^2}}$.

The function is defined for $1 - x^2 - y^2 > 0$. Therefore, the domain is the set of points (x, y, z) such that $x^2 + y^2 < 1$ — that is, the interior of the cylinder $x^2 + y^2 = 1$ of radius 1 whose axis is the z-axis. To find the range, note that $z^2 + 1 \ge 1$. Also,

$$
1 - x^2 - y^2 \le 1
$$
, and $\sqrt{1 - x^2 - y^2} \le 1$, so $\frac{1}{\sqrt{1 - x^2 - y^2}} \ge 1$.

Hence,

$$
f(x, y, z) = \frac{z^2 + 1}{\sqrt{1 - x^2 - y^2}} \ge 1 \cdot 1 = 1.
$$

This shows that every output of f is greater than or equal to 1. On the other hand, suppose $k \geq 1$. Then

$$
f(0,0,\sqrt{k-1}) = \frac{(\sqrt{k-1})^2 + 1}{\sqrt{1 - 0 - 0}} = k.
$$

This shows that every number greater than or equal to 1 is an output of f . Hence, the range of f is the set of numbers w such that $w \geq 1$. \Box

4. (a) Show that
$$
\lim_{(x,y)\to(0,0)} \frac{3x^4 + 5y^4}{x^4 + 3x^2y^2 + y^4}
$$
 is undefined.

If you approach $(0, 0)$ along the x-axis $(y = 0)$, you get

$$
\lim_{(x,y)\to(0,0)}\frac{3x^4+5y^4}{x^4+3x^2y^2+y^4} = \lim_{(x,y)\to(0,0)}\frac{3x^4}{x^4} = \lim_{(x,y)\to(0,0)}3 = 3.
$$

If you approach $(0, 0)$ along the line $y = x$, you get

$$
\lim_{(x,y)\to(0,0)}\frac{3x^4+5y^4}{x^4+3x^2y^2+y^4} = \lim_{(x,y)\to(0,0)}\frac{3x^4+5x^4}{x^4+3x^4+x^4} = \lim_{(x,y)\to(0,0)}\frac{8x^4}{5x^4} = \lim_{(x,y)\to(0,0)}\frac{8}{5} = \frac{8}{5}.
$$

Since the function approaches different values as you approach $(0, 0)$ in different ways, the limit is undefined. \square

(b) Show that $\lim_{(x,y)\to(0,0)}$ x^4y^4 $\frac{d^2y}{(x^4+3x^2y^2+y^4)}$ is defined and find its value.

$$
\left|\frac{x^4y^4}{x^4+3x^2y^2+y^4}\right| \le \left|\frac{x^4y^4}{x^4}\right| = |y^4| \to 0 \quad \text{as} \quad (x,y) \to (0,0).
$$

Therefore,

$$
\lim_{(x,y)\to(0,0)}\left|\frac{x^4y^4}{x^4+3x^2y^2+y^4}\right|=0.
$$

Hence,

$$
\lim_{(x,y)\to(0,0)}\frac{x^4y^4}{x^4+3x^2y^2+y^4}=0.\quad \Box
$$

5. For what points (x, y) is the function $f(x, y) = \ln(xy)$ continuous?

The function is continuous wherever it's defined. For $\ln(xy)$ to be defined, I must have $xy > 0$. Therefore, either x and y are both positive or x and y are both negative.

Hence, f is continuous for (x, y) in the first quadrant or the third quadrant of the x-y-plane.

6. Find the tangent plane to the surface

$$
x = u^2 - 3v^2
$$
, $y = \frac{4u}{v}$, $z = 2u^2v^3$

for $u = 1$ and $v = 1$.

When $u = 1$ and $v = 1$, $x = -2$, $y = 4$, and $z = 2$. The point of tangency is $(-2, 4, 2)$. Next,

$$
\vec{T}_u = \left\langle 2u, \frac{4}{v}, 4uv^3 \right\rangle \quad \text{and} \quad \vec{T}_v = \left\langle -6v, -\frac{4u}{v^2}, 6u^2v^2 \right\rangle.
$$

Thus,

$$
\vec{T}_u(1,1) = \langle 2, 4, 4 \rangle
$$
 and $\vec{T}_v(1,1) = \langle -6, -4, 6 \rangle$.

The normal vector is given by

$$
\vec{T}_u(1,1) \times \vec{T}_v(1,1) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 4 & 4 \\ -6 & -4 & 6 \end{vmatrix} = \langle 40, -36, 16 \rangle.
$$

The tangent plane is

$$
40(x+2) - 36(y-4) + 16(z-2) = 0, \text{ or } 10x - 9y + 4z = -48. \square
$$

7. Use a linear approximation to $z = f(x, y) = x^2 - y^2$ at the point $(2, 1)$ to approximate $f(1.9, 1.1)$.

 $f(2, 1) = 3$, so the point of tangency is $(2, 1, 3)$. A normal vector for a function $z = f(x, y)$ is given by

$$
\vec{N} = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, -1 \right\rangle = \langle 2x, -2y, -1 \rangle, \quad \vec{N}(2, 1) = \langle 4, -2, -1 \rangle.
$$

Hence, the tangent plane is

$$
4(x-2) - 2(y-1) - (z-3) = 0, \text{ or } z = 3 + 4(x-2) - 2(y-1).
$$

Substitute $x = 1.9$ and $y = 1.1$:

$$
z = 3 + 4(-0.1) - 2(0.1) = 2.4. \quad \Box
$$

8. Find the gradient of $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2 + 1}}$ and show that it always points toward the origin.

$$
\nabla f = \left\langle \frac{-x}{(x^2 + y^2 + z^2 + 1)^{3/2}}, \frac{-y}{(x^2 + y^2 + z^2 + 1)^{3/2}}, \frac{-z}{(x^2 + y^2 + z^2 + 1)^{3/2}} \right\rangle = \frac{-1}{(x^2 + y^2 + z^2 + 1)^{3/2}} \langle x, y, z \rangle.
$$

 $\langle x, y, z \rangle$ is the **radial vector** from the origin $(0, 0, 0)$ to the point (x, y, z) . Since ∇f is a negative multiple of this vector ∇f always points *inward* toward the origin. \square

9. Find the rate of change of $f(x, y, z) = xy - yz + xz$ at the point $(1, -2, -2)$ in the direction toward the origin. Is f increasing or decreasing in this direction?

First, compute the gradient at the point:

$$
\nabla f = \langle y + z, x - z, -y + x \rangle, \quad \nabla f(1, -2, -2) = \langle -4, 3, 3 \rangle.
$$

Next, determine the direction vector. The point is $P(1, -2, -2)$, so the direction toward the origin $Q(0, 0, 0)$ is

$$
\overrightarrow{PQ} = \langle -1, 2, 2 \rangle.
$$

Make this into a unit vector by dividing by its length:

$$
\frac{\overrightarrow{PQ}}{\|\overrightarrow{PQ}\|}=\frac{1}{3}\langle -1,2,2\rangle.
$$

Finally, take the dot product of the unit vector with the gradient:

$$
Df_{\vec{v}}(1,-2,-2) = \nabla f(1,-2,-2) \cdot \frac{\overrightarrow{PQ}}{\|\overrightarrow{PQ}\|} \langle -4,3,3 \rangle \cdot \frac{1}{3} \langle -1,2,2 \rangle = \frac{16}{3}.
$$

f is increasing in this direction, since the directional derivative is positive. \Box

10. Calvin Butterball sits in his go-cart on the surface

$$
z = x^3 - 2x^2y + x^2 + xy^2 - 2y^3 + y^2
$$

at the point $(1, 1, 0)$. If his go-cart is pointed in the direction of the vector $\vec{v} = \langle 15, -8 \rangle$, at what rate will it roll downhill?

The rate at which he rolls is given by the directional derivative. The gradient is

$$
\nabla f = \langle 3x^2 - 6xy + 2x + y^2, -2x^2 + 2xy - 6y^2 + 2y \rangle
$$
, and $\nabla f(1, 1) = \langle 0, -4 \rangle$.

Since $\|\langle 15, -8 \rangle \| = 17$,

$$
Df_{\vec{v}}(1,1) = \langle 0, -4 \rangle \cdot \frac{\langle 15, -8 \rangle}{17} = \frac{32}{17} \approx 1.88235.
$$

11. Find the tangent plane to $x^2 - y^2 + 2yz + z^5 = 6$ at the point $(2, 1, 1)$.

Write $w = x^2 - y^2 + 2yz + z^5 - 6$. (Take the original surface and drag everything to one side of the equation.) The original surface is $w = 0$, so it's a level surface of w. Since the gradient ∇w is perpendicular to the level surfaces of w, ∇w must be perpendicular to the original surface.

The gradient is

$$
\nabla w = \langle 2x, -2y + 2z, 2y + 5z^4 \rangle, \quad \nabla w(2, 1, 1) = \langle 4, 0, 7 \rangle.
$$

The vector $\langle 4, 0, 7 \rangle$ is perpendicular to the tangent plane. Hence, the plane is

$$
4(x-2) + 0 \cdot (y-1) + 7(z-1) = 0, \text{ or } 4x + 7z = 15. \square
$$

12. The rate of change of $f(x, y)$ at $(1, -1)$ is 2 in the direction toward $(5, -1)$ and is $\frac{6}{5}$ in the direction of the vector $\langle -3, -4 \rangle$. Find $\nabla f(1, -1)$.

The direction from $(1, -1)$ toward the point $(5, -1)$ is given by the vector $\langle 4, 0 \rangle$. This vector has length 4, so

$$
2 = \nabla f(1, -1) \cdot \frac{\langle 4, 0 \rangle}{4} = \langle f_x, f_y \rangle \cdot \frac{\langle 4, 0 \rangle}{4} = f_x.
$$

The vector $\langle -3, -4 \rangle$ has length 5, so

$$
\frac{6}{5} = \nabla f(1, -1) \cdot \frac{\langle -3, -4 \rangle}{5} = \langle f_x, f_y \rangle \cdot \frac{\langle -3, -4 \rangle}{5} = -\frac{3}{5} f_x - \frac{4}{5} f_y.
$$

Thus, $6 = -3f_x - 4f_y$.

I have two equations involving f_x and f_y . Solving simultaneously, I obtain $f_x = 2$ and $f_y = -3$. Hence, $\nabla f(1, -1) = \langle 2, -3 \rangle$. \Box

13. Let r and θ be the standard polar coordinates variables. Use the Chain Rule to find $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$, for $f(x, y) = xe^x + e^y.$

$$
\frac{\partial f}{\partial r} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial r} = (xe^x + e^x)(\cos\theta) + (e^y)(\sin\theta),
$$

$$
\frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial \theta} = (xe^x + e^x)(-r\sin\theta) + (e^y)(r\cos\theta). \quad \Box
$$

14. Suppose $u = f(x, y, z)$ and $x = \phi(s, t), y = \psi(s, t), z = \mu(s, t)$. Use the Chain Rule to write down an expression for $\frac{\partial u}{\partial t}$.

This diagram shows the dependence of the variables.

There are 3 paths from u to t , which give rise to the 3 terms in the following sum:

$$
\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial u}{\partial z}\frac{\partial z}{\partial t}.
$$

15. Suppose that $w = f(x, y)$, $x = g(r, s, t)$, and $y = h(r, t, s)$. Use the Chain Rule to find an expression for $\partial^2 f$ $\frac{\partial^2 J}{\partial t^2}$. By the Chain Rule,

$$
\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial t}.
$$

Next, differentiate with respect to t, applying the Product Rule to the terms on the right:

$$
\frac{\partial^2 f}{\partial t^2} = \frac{\partial w}{\partial x} \frac{\partial^2 x}{\partial t^2} + \frac{\partial x}{\partial t} \frac{\partial}{\partial t} \left(\frac{\partial w}{\partial x} \right) + \frac{\partial w}{\partial y} \frac{\partial^2 y}{\partial t^2} + \frac{\partial y}{\partial t} \frac{\partial}{\partial t} \left(\frac{\partial w}{\partial x} \right).
$$

Since $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ are functions of x and y, I must apply the Chain Rule in computing their derivatives with respect to t . I get

$$
\frac{\partial^2 f}{\partial t^2} = \frac{\partial w}{\partial x} \frac{\partial^2 x}{\partial t^2} + \frac{\partial x}{\partial t} \left(\frac{\partial}{\partial x} \left(\frac{\partial w}{\partial x} \right) \frac{\partial x}{\partial t} + \frac{\partial}{\partial y} \left(\frac{\partial w}{\partial x} \right) \frac{\partial y}{\partial t} \right) + \frac{\partial w}{\partial y} \frac{\partial^2 y}{\partial t^2} + \frac{\partial y}{\partial t} \left(\frac{\partial}{\partial x} \left(\frac{\partial w}{\partial y} \right) \frac{\partial x}{\partial t} + \frac{\partial}{\partial y} \left(\frac{\partial w}{\partial y} \right) \frac{\partial y}{\partial t} \right) =
$$

$$
\frac{\partial w}{\partial x} \frac{\partial^2 x}{\partial t^2} + \frac{\partial x}{\partial t} \left(\frac{\partial^2 w}{\partial x^2} \frac{\partial x}{\partial t} + \frac{\partial^2 w}{\partial x \partial y} \frac{\partial y}{\partial t} \right) + \frac{\partial w}{\partial y} \frac{\partial^2 y}{\partial t^2} + \frac{\partial y}{\partial t} \left(\frac{\partial^2 w}{\partial x \partial y} \frac{\partial x}{\partial t} + \frac{\partial^2 w}{\partial y^2} \frac{\partial y}{\partial t} \right). \quad \Box
$$

16. Locate and classify the critical points of

$$
z = x^2y - 4xy + \frac{1}{3}y^3 - \frac{3}{2}y^2.
$$

$$
\frac{\partial z}{\partial x} = 2xy - 4y, \quad \frac{\partial z}{\partial y} = x^2 - 4x + y^2 - 3y,
$$

$$
\frac{\partial^2 z}{\partial x^2} = 2y, \quad \frac{\partial^2 z}{\partial x \partial y} = 2x - 4, \quad \frac{\partial^2 z}{\partial y^2} = 2y - 3.
$$

Set the first partials equal to 0:

(1)
$$
2xy - 4y = 0, \quad (x - 2)y = 0,
$$

(2)
$$
x^2 - 4x + y^2 - 3y = 0.
$$

Solve simultaneously:

(1)
$$
(x-2)y = 0
$$

\n $x = 2$
\n(2) $x^2 - 4x + y^2 - 3y = 0$
\n $y^2 - 3y - 4 = 0$
\n $(y-4)(y+1) = 0$
\n(2) $x^2 - 4x + y^2 - 3y = 0$
\n $x^2 - 4x = 0$
\n $x^2 - 4x = 0$
\n $(x-4) = 0$
\n $x(x-4) = 0$
\n $y = 4$
\n(2, 4) $y = -1$
\n(2, 4) $(2, -1)$
\n(4, 0)

Test the critical points:

17. Find the points on the sphere $x^2 + y^2 + z^2 = 36$ which are closest to and farthest from the point $(4, -3, 12)$.

The (square of the) distance from (x, y, z) to $(4, -3, 12)$ is

$$
w = (x - 4)^{2} + (y + 3)^{2} + (z - 12)^{2}.
$$

The constraint is $g(x, y, z) = x^2 + y^2 + z^2 - 36 = 0$. The equations to be solved are

(1)
$$
2(x-4) = 2x\lambda, \quad x - 4 = x\lambda,
$$

(2)
$$
2(y+3) = 2y\lambda, \quad y+3 = y\lambda,
$$

(3)
$$
2(z-12) = 2z\lambda, \quad z-12 = z\lambda.
$$

Note that if $x = 0$ in the first equation, the equation becomes $-4 = 0$, which is impossible. Therefore, $x \neq 0$, and I may divide by x.

Solve simultaneously:

(1)
$$
x-4 = x\lambda
$$

\n $\lambda = \frac{x-4}{x}$
\n(2) $y+3 = y\lambda$
\n $y+3 = \frac{y(x-4)}{x}$
\n $xy + 3x = \frac{3}{x}$
\n(3) $z-12 = z\lambda$
\n $z-12 = \frac{z(x-4)}{x}$
\n $z = 3x$
\n(4) $x^2 + y^2 + z^2 = 36$
\n $x^2 + \frac{9}{16}x^2 + 9x^2 = 36$
\n $169x^2 = 576$
\n $x^2 = \frac{576}{169}$
\n $x = \frac{24}{13}$
\n $y = -\frac{13}{13}$
\n $z = \frac{72}{13}$
\n $z = \frac{72}{13}$
\n $\left(\frac{24}{13}, -\frac{18}{13}, \frac{72}{13}\right)$
\n $\left(-\frac{24}{13}, \frac{18}{13}, -\frac{72}{13}\right)$
\n $\left(-\frac{24}{13}, \frac{18}{13}, -\frac{72}{13}\right)$

Test the points:

$$
\begin{array}{|c|c|c|c|}\n\hline\n & \left(\frac{24}{13}, -\frac{18}{13}, \frac{72}{13}\right) & \left(-\frac{24}{13}, \frac{18}{13}, -\frac{72}{13}\right) \\
\hline\nw(x, y, z) & 49 & 361 \\
\hline\n\left(\frac{24}{13}, -\frac{18}{13}, \frac{72}{13}\right) & \text{is closest to (4, -3, 12) and } \left(-\frac{24}{13}, \frac{18}{13}, -\frac{72}{13}\right) & \text{is farthest from (4, -3, 12).} \quad \Box\n\end{array}
$$

To be conscious that you are ignorant is a great step to knowledge. - BENJAMIN DISRAELI