
Math 261-00
2–27–2004

Review Sheet for Test 2

These problems are provided to help you study. The presence of a problem on this handout does not
imply that there will be a similar problem on the test. And the absence of a topic does not imply that it
won’t appear on the test.

1. Find the unit tangent and unit normal for the curve y =
1

3
x3 + x2 + 3x+

2

3
at the point (1, 5).

2. For the curve

~r(t) =

〈

1

3
t3 + 1, t2 + 1, 2t+ 5

〉

,

find the unit tangent, the unit normal, the binormal, and the osculating circle at t = 1.

3. Find the domain and range of f(x, y, z) =
z2 + 1

√

1 − x2 − y2
.

4. (a) Show that lim
(x,y)→(0,0)

3x4 + 5y4

x4 + 3x2y2 + y4
is undefined.

(b) Show that lim
(x,y)→(0,0)

x4y4

x4 + 3x2y2 + y4
is defined and find its value.

5. For what points (x, y) is the function f(x, y) = ln(xy) continuous?

6. Find the tangent plane to the surface

x = u2 − 3v2, y =
4u

v
, z = 2u2v3

for u = 1 and v = 1.

7. Use a linear approximation to z = f(x, y) = x2 − y2 at the point (2, 1) to approximate f(1.9, 1.1).

8. Find the gradient of f(x, y, z) =
1

√

x2 + y2 + z2 + 1
and show that it always points toward the origin.

9. Find the rate of change of f(x, y, z) = xy − yz + xz at the point (1,−2,−2) in the direction toward the
origin. Is f increasing or decreasing in this direction?

10. Calvin Butterball sits in his go-cart on the surface

z = x3 − 2x2y + x2 + xy2 − 2y3 + y2

at the point (1, 1, 0). If his go-cart is pointed in the direction of the vector ~v = 〈15,−8〉, at what rate will it
roll downhill?

11. Find the tangent plane to x2 − y2 + 2yz + z5 = 6 at the point (2, 1, 1).

12. The rate of change of f(x, y) at (1,−1) is 2 in the direction toward (5,−1) and is
6

5
in the direction of

the vector 〈−3,−4〉. Find ∇f(1,−1).

13. Let r and θ be the standard polar coordinates variables. Use the Chain Rule to find
∂f

∂r
and

∂f

∂θ
, for

f(x, y) = xex + ey.
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14. Suppose u = f(x, y, z) and x = φ(s, t), y = ψ(s, t), z = µ(s, t). Use the Chain Rule to write down an

expression for
∂u

∂t
.

15. Suppose that w = f(x, y), x = g(r, s, t), and y = h(r, t, s). Use the Chain Rule to find an expression for
∂2f

∂t2
.

16. Locate and classify the critical points of

z = x2y − 4xy+
1

3
y3 − 3

2
y2.

17. Find the points on the sphere x2+y2+z2 = 36 which are closest to and farthest from the point (4,−3, 12).

Solutions to the Review Sheet for Test 2

1. Find the unit tangent and unit normal for the curve y =
1

3
x3 + x2 + 3x+

2

3
at the point (1, 5).

The curve may be parametrized by

~r(t) =

〈

t,
1

3
t3 + t2 + 3t+

2

3

〉

.

Thus,
~r ′(t) = 〈1, t2 + 2t+ 3〉, ~r ′(1) = 〈1, 6〉, ‖~r ′(1)‖ =

√
37.

The unit tangent is

~T (1) =
1√
37

〈1, 6〉.

For a plane curve, I can use geometry to find the unit normal. By swapping components and negating
one of them, I can see that the following unit vectors are perpendicular to ~T (1):

1√
37

〈−6, 1〉, 1√
37

〈6,−1〉.

Graph the curve near x = 1:

0.5 1 1.5 2

2

4

6

8

10

12

From the graph, I can see that the unit normal at x = 1 must point up and to the left. This means that
the x-component must be negative and the y-component must be positive. Hence,

~N(1) =
1√
37

〈−6, 1〉.
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Note that you can’t use this trick in 3 dimensions, since there are infinitely many vectors perpendicular
to the unit tangent.

2. For the curve

~r(t) =

〈

1

3
t3 + 1, t2 + 1, 2t+ 5

〉

,

find the unit tangent, the unit normal, the binormal, and the osculating circle at t = 1.

~r ′(t) = 〈t2, 2t, 2〉, ~r ′(1) = 〈1, 2, 2〉, ‖~r ′(1)‖ = 3.

The unit tangent at t = 1 is

~T (1) =
1

3
〈1, 2, 2〉.

Now

‖~r ′(t)‖ =
√

t4 + 4t2 + 4 =
√

(t2 + 2)2 = t2 + 2,

so

~T (t) =

〈

t2

t2 + 2
,

2t

t2 + 2
,

2

t2 + 2

〉

.

Hence,

~T ′(t) =

〈

4t

(t2 + 2)2
,

4 − 2t2

(t2 + 2)2
,− 4t

(t2 + 2)2

〉

,

~T ′(1) =

〈

4

9
,
2

9
,−4

9

〉

=
2

9
〈2, 1,−2〉,

‖~T ′(1)‖ =
2

9

√

22 + 12 + (−2)2 =
2

3
.

The unit normal at t = 1 is

~N(1) =
1
2

3

2

9
〈2, 1,−2〉 =

1

3
〈2, 1,−2〉.

The binormal at t = 1 is

~T (1) × ~N(1) =
1

9

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

1 2 2
2 1 −2

∣

∣

∣

∣

∣

∣

=
1

9
〈−6, 6,−3〉 =

1

3
〈−2, 2,−1〉.

Next, I’ll compute the curvature.

~r ′(t) = 〈t2, 2t, 2〉, so ~r ′′(t) = 〈2t, 2, 0〉, and ~r ′′(1) = 〈2, 2, 0〉.

So

~r ′(1) × ~r ′′(1) =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

1 2 2
2 2 0

∣

∣

∣

∣

∣

∣

= 〈−4, 4,−2〉 and ‖~r ′(1) × ~r ′′(1)‖ =
√

16 + 16 + 4 = 6.

The curvature is

κ =
‖~r ′(1) × ~r ′′(1)‖

‖~r ′(1)‖3
=

6

33
=

2

9
.
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The point on the curve is ~r(1) =

(

4

3
, 2, 7

)

. Therefore the equation of the osculating circle is

(x, y, z) =

〈

4

3
, 2, 7

〉

+
9

2
· 1

3
〈2, 1,−2〉+

9

2
· 1

3
〈1, 2, 2〉 cos t+

9

2
· 1

3
〈2, 1,−2〉 sin t =

〈

13

3
+

3

2
cos t+ 3 sin t,

7

2
+ 3 cos t+

3

2
sin t, 4 + 3 cos t− 3 sin t

〉

.

3. Find the domain and range of f(x, y, z) =
z2 + 1

√

1 − x2 − y2
.

The function is defined for 1−x2 − y2 > 0. Therefore, the domain is the set of points (x, y, z) such that
x2 + y2 < 1 — that is, the interior of the cylinder x2 + y2 = 1 of radius 1 whose axis is the z-axis.

To find the range, note that z2 + 1 ≥ 1. Also,

1 − x2 − y2 ≤ 1, and
√

1 − x2 − y2 ≤ 1, so
1

√

1 − x2 − y2
≥ 1.

Hence,

f(x, y, z) =
z2 + 1

√

1 − x2 − y2
≥ 1 · 1 = 1.

This shows that every output of f is greater than or equal to 1.
On the other hand, suppose k ≥ 1. Then

f(0, 0,
√
k − 1) =

(
√
k − 1)2 + 1√
1 − 0 − 0

= k.

This shows that every number greater than or equal to 1 is an output of f .
Hence, the range of f is the set of numbers w such that w ≥ 1.

4. (a) Show that lim
(x,y)→(0,0)

3x4 + 5y4

x4 + 3x2y2 + y4
is undefined.

If you approach (0, 0) along the x-axis (y = 0), you get

lim
(x,y)→(0,0)

3x4 + 5y4

x4 + 3x2y2 + y4
= lim

(x,y)→(0,0)

3x4

x4
= lim

(x,y)→(0,0)
3 = 3.

If you approach (0, 0) along the line y = x, you get

lim
(x,y)→(0,0)

3x4 + 5y4

x4 + 3x2y2 + y4
= lim

(x,y)→(0,0)

3x4 + 5x4

x4 + 3x4 + x4
= lim

(x,y)→(0,0)

8x4

5x4
= lim

(x,y)→(0,0)

8

5
=

8

5
.

Since the function approaches different values as you approach (0, 0) in different ways, the limit is
undefined.

(b) Show that lim
(x,y)→(0,0)

x4y4

x4 + 3x2y2 + y4
is defined and find its value.

∣

∣

∣

∣

x4y4

x4 + 3x2y2 + y4

∣

∣

∣

∣

≤
∣

∣

∣

∣

x4y4

x4

∣

∣

∣

∣

= |y4| → 0 as (x, y) → (0, 0).
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Therefore,

lim
(x,y)→(0,0)

∣

∣

∣

∣

x4y4

x4 + 3x2y2 + y4

∣

∣

∣

∣

= 0.

Hence,

lim
(x,y)→(0,0)

x4y4

x4 + 3x2y2 + y4
= 0.

5. For what points (x, y) is the function f(x, y) = ln(xy) continuous?

The function is continuous wherever it’s defined. For ln(xy) to be defined, I must have xy > 0. Therefore,
either x and y are both positive or x and y are both negative.

Hence, f is continuous for (x, y) in the first quadrant or the third quadrant of the x-y-plane.

x

y

6. Find the tangent plane to the surface

x = u2 − 3v2, y =
4u

v
, z = 2u2v3

for u = 1 and v = 1.

When u = 1 and v = 1, x = −2, y = 4, and z = 2. The point of tangency is (−2, 4, 2).
Next,

~Tu =

〈

2u,
4

v
, 4uv3

〉

and ~Tv =

〈

−6v,−4u

v2
, 6u2v2

〉

.

Thus,
~Tu(1, 1) = 〈2, 4, 4〉 and ~Tv(1, 1) = 〈−6,−4, 6〉.

The normal vector is given by

~Tu(1, 1) × ~Tv(1, 1) =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

2 4 4
−6 −4 6

∣

∣

∣

∣

∣

∣

= 〈40,−36, 16〉.

The tangent plane is

40(x+ 2) − 36(y − 4) + 16(z − 2) = 0, or 10x− 9y + 4z = −48.
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7. Use a linear approximation to z = f(x, y) = x2 − y2 at the point (2, 1) to approximate f(1.9, 1.1).

f(2, 1) = 3, so the point of tangency is (2, 1, 3). A normal vector for a function z = f(x, y) is given by

~N =

〈

∂f

∂x
,
∂f

∂y
,−1

〉

= 〈2x,−2y,−1〉, ~N(2, 1) = 〈4,−2,−1〉.

Hence, the tangent plane is

4(x− 2) − 2(y − 1) − (z − 3) = 0, or z = 3 + 4(x− 2) − 2(y − 1).

Substitute x = 1.9 and y = 1.1:

z = 3 + 4(−0.1)− 2(0.1) = 2.4.

8. Find the gradient of f(x, y, z) =
1

√

x2 + y2 + z2 + 1
and show that it always points toward the origin.

∇f =

〈 −x
(x2 + y2 + z2 + 1)3/2

,
−y

(x2 + y2 + z2 + 1)3/2
,

−z
(x2 + y2 + z2 + 1)3/2

〉

=

−1

(x2 + y2 + z2 + 1)3/2
〈x, y, z〉.

〈x, y, z〉 is the radial vector from the origin (0, 0, 0) to the point (x, y, z). Since ∇f is a negative
multiple of this vector ∇f always points inward toward the origin.

9. Find the rate of change of f(x, y, z) = xy − yz + xz at the point (1,−2,−2) in the direction toward the
origin. Is f increasing or decreasing in this direction?

First, compute the gradient at the point:

∇f = 〈y + z, x− z,−y + x〉 , ∇f(1,−2,−2) = 〈−4, 3, 3〉.

Next, determine the direction vector. The point is P (1,−2,−2), so the direction toward the origin
Q(0, 0, 0) is

−−→
PQ = 〈−1, 2, 2〉.

Make this into a unit vector by dividing by its length:

−−→
PQ

‖−−→PQ‖
=

1

3
〈−1, 2, 2〉.

Finally, take the dot product of the unit vector with the gradient:

Df~v(1,−2,−2) = ∇f(1,−2,−2) ·
−−→
PQ

‖−−→PQ‖
〈−4, 3, 3〉 · 1

3
〈−1, 2, 2〉 =

16

3
.

f is increasing in this direction, since the directional derivative is positive.
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10. Calvin Butterball sits in his go-cart on the surface

z = x3 − 2x2y + x2 + xy2 − 2y3 + y2

at the point (1, 1, 0). If his go-cart is pointed in the direction of the vector ~v = 〈15,−8〉, at what rate will it
roll downhill?

The rate at which he rolls is given by the directional derivative. The gradient is

∇f = 〈3x2 − 6xy + 2x+ y2 ,−2x2 + 2xy − 6y2 + 2y〉, and ∇f(1, 1) = 〈0,−4〉.

Since ‖〈15,−8〉‖ = 17,

Df~v(1, 1) = 〈0,−4〉 · 〈15,−8〉
17

=
32

17
≈ 1.88235.

11. Find the tangent plane to x2 − y2 + 2yz + z5 = 6 at the point (2, 1, 1).

Write w = x2 − y2 + 2yz + z5 − 6. (Take the original surface and drag everything to one side of the
equation.) The original surface is w = 0, so it’s a level surface of w. Since the gradient ∇w is perpendicular
to the level surfaces of w, ∇w must be perpendicular to the original surface.

The gradient is
∇w = 〈2x,−2y+ 2z, 2y+ 5z4〉, ∇w(2, 1, 1) = 〈4, 0, 7〉.

The vector 〈4, 0, 7〉 is perpendicular to the tangent plane. Hence, the plane is

4(x− 2) + 0 · (y − 1) + 7(z − 1) = 0, or 4x+ 7z = 15.

12. The rate of change of f(x, y) at (1,−1) is 2 in the direction toward (5,−1) and is
6

5
in the direction of

the vector 〈−3,−4〉. Find ∇f(1,−1).

The direction from (1,−1) toward the point (5,−1) is given by the vector 〈4, 0〉. This vector has length
4, so

2 = ∇f(1,−1) · 〈4, 0〉
4

= 〈fx, fy〉 ·
〈4, 0〉

4
= fx.

The vector 〈−3,−4〉 has length 5, so

6

5
= ∇f(1,−1) · 〈−3,−4〉

5
= 〈fx, fy〉 ·

〈−3,−4〉
5

= −3

5
fx − 4

5
fy.

Thus, 6 = −3fx − 4fy.
I have two equations involving fx and fy . Solving simultaneously, I obtain fx = 2 and fy = −3. Hence,

∇f(1,−1) = 〈2,−3〉.

13. Let r and θ be the standard polar coordinates variables. Use the Chain Rule to find
∂f

∂r
and

∂f

∂θ
, for

f(x, y) = xex + ey.
∂f

∂r
=
∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r
= (xex + ex)(cos θ) + (ey)(sin θ),

∂f

∂θ
=
∂f

∂x

∂x

∂θ
+
∂f

∂y

∂y

∂θ
= (xex + ex)(−r sin θ) + (ey)(r cos θ).

7



14. Suppose u = f(x, y, z) and x = φ(s, t), y = ψ(s, t), z = µ(s, t). Use the Chain Rule to write down an

expression for
∂u

∂t
.

This diagram shows the dependence of the variables.

yx

x

s

st

t

s t

y
z

s t

z

u

u

x

zx

z

y y

u
u

There are 3 paths from u to t, which give rise to the 3 terms in the following sum:

∂u

∂t
=
∂u

∂x

∂x

∂t
+
∂u

∂y

∂y

∂t
+
∂u

∂z

∂z

∂t
.

15. Suppose that w = f(x, y), x = g(r, s, t), and y = h(r, t, s). Use the Chain Rule to find an expression for
∂2f

∂t2
. By the Chain Rule,

∂w

∂t
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
.

Next, differentiate with respect to t, applying the Product Rule to the terms on the right:

∂2f

∂t2
=
∂w

∂x

∂2x

∂t2
+
∂x

∂t

∂

∂t

(

∂w

∂x

)

+
∂w

∂y

∂2y

∂t2
+
∂y

∂t

∂

∂t

(

∂w

∂x

)

.

Since
∂w

∂x
and

∂w

∂y
are functions of x and y, I must apply the Chain Rule in computing their derivatives

with respect to t. I get

∂2f

∂t2
=
∂w

∂x

∂2x

∂t2
+
∂x

∂t

(

∂

∂x

(

∂w

∂x

)

∂x

∂t
+

∂

∂y

(

∂w

∂x

)

∂y

∂t

)

+
∂w

∂y

∂2y

∂t2
+
∂y

∂t

(

∂

∂x

(

∂w

∂y

)

∂x

∂t
+

∂

∂y

(

∂w

∂y

)

∂y

∂t

)

=

∂w

∂x

∂2x

∂t2
+
∂x

∂t

(

∂2w

∂x2

∂x

∂t
+

∂2w

∂x∂y

∂y

∂t

)

+
∂w

∂y

∂2y

∂t2
+
∂y

∂t

(

∂2w

∂x∂y

∂x

∂t
+
∂2w

∂y2

∂y

∂t

)

.

16. Locate and classify the critical points of

z = x2y − 4xy+
1

3
y3 − 3

2
y2.

∂z

∂x
= 2xy − 4y,

∂z

∂y
= x2 − 4x+ y2 − 3y,
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∂2z

∂x2
= 2y,

∂2z

∂x∂y
= 2x− 4,

∂2z

∂y2
= 2y − 3.

Set the first partials equal to 0:

(1) 2xy− 4y = 0, (x− 2)y = 0,

(2) x2 − 4x+ y2 − 3y = 0.

Solve simultaneously:

(1) (x− 2)y = 0
ւ ց

x = 2 y = 0
(2) x2 − 4x+ y2 − 3y = 0 (2) x2 − 4x+ y2 − 3y = 0

y2 − 3y − 4 = 0 x2 − 4x = 0
(y − 4)(y + 1) = 0 x(x− 4) = 0

ւ ↓ ↓ ց
y = 4 y = −1 x = 0 x = 4
(2, 4) (2,−1) (0, 0) (4, 0)

Test the critical points:

point zxx zyy zxy ∆ result

(2, 4) 8 5 0 40 min

(2,−1) −2 −5 0 10 max

(0, 0) 0 −3 −4 −16 saddle

(4, 0) 0 −3 4 −16 saddle

17. Find the points on the sphere x2+y2+z2 = 36 which are closest to and farthest from the point (4,−3, 12).

The (square of the) distance from (x, y, z) to (4,−3, 12) is

w = (x− 4)2 + (y + 3)2 + (z − 12)2.

The constraint is g(x, y, z) = x2 + y2 + z2 − 36 = 0.
The equations to be solved are

(1) 2(x− 4) = 2xλ, x− 4 = xλ,

(2) 2(y + 3) = 2yλ, y + 3 = yλ,

(3) 2(z − 12) = 2zλ, z − 12 = zλ.

Note that if x = 0 in the first equation, the equation becomes −4 = 0, which is impossible. Therefore,
x 6= 0, and I may divide by x.
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Solve simultaneously:

(1) x− 4 = xλ

λ =
x− 4

x
(2) y + 3 = yλ

y + 3 =
y(x − 4)

x
xy + 3x = yx − 4y

y = −3

4
x

(3) z − 12 = zλ

z − 12 =
z(x− 4)

x
xz − 12x = xz − 4z

z = 3x
(4) x2 + y2 + z2 = 36

x2 +
9

16
x2 + 9x2 = 36

169x2 = 576

x2 =
576

169
ւ ց

x =
24

13
x = −24

13

y = −18

13
y =

18

13

z =
72

13
z = −72

13
(

24

13
,−18

13
,
72

13

) (

−24

13
,
18

13
,−72

13

)

Test the points:

(

24

13
,−18

13
,
72

13

) (

−24

13
,
18

13
,−72

13

)

w(x, y, z) 49 361

(

24

13
,−18

13
,
72

13

)

is closest to (4,−3, 12) and

(

−24

13
,
18

13
,−72

13

)

is farthest from (4,−3, 12).

To be conscious that you are ignorant is a great step to knowledge. - Benjamin Disraeli
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