Formulas and Tables by Mario F. Triola

Copyright 2010 Pearson Education, Inc.

Ch. 3: Descriptive Statistics $\bar{x} = \frac{\sum x}{n}$ Mean $= \frac{\sum f \cdot x}{\sum f}$ Mean (frequency table) $s = \sqrt{\frac{m-1}{n-1}}$ Standard deviation $s = \sqrt{\frac{n(\Sigma x^2) - (\Sigma x)^2}{n}}$ Standard deviation $s = \sqrt{\frac{n[\Sigma(f \cdot x^2)] - [\Sigma(f \cdot x)]^2}{(f \cdot x)}}$ Standard deviation variance $= s^2$ **Ch. 4: Probability** $P(A \text{ or } B) = P(A) + P(B)$ if *A*, *B* are mutually exclusive if *A, B* are not mutually exclusive $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$ $\sqrt{\frac{n(n-1)}{n(n-1)}}$ (frequency table) $n[\Sigma(f \cdot x^2)] - [\Sigma(f \cdot x)]^2$ $n(n-1)$ $\sqrt{\frac{n(n-1)}{n(n-1)}}$ (shortcut) $n(\Sigma x^2) - (\Sigma x)^2$ $n(n-1)$ $\Sigma(x-\bar{x})^2$ $n - 1$ $\bar{x} = \frac{y}{\sum_{j}}$

if *A*, *B* are not mutually exclusive
 $P(A \text{ and } B) = P(A) \cdot P(B)$ if *A*, *B* are independent $P(A \text{ and } B) = P(A) \cdot P(B|A)$ if *A*, *B* are dependent $P(\overline{A}) = 1 - P(A)$ Rule of complements $n_r = \frac{n!}{(n-r)!}$ Permutations (no elements alike) $\frac{n!}{(n+1)(n+1)}$ Permutations (*n*₁ alike, ...) $C_r = \frac{n!}{(n-r)! \, r!}$ Combinations $n_1! n_2! \cdots n_k!$

Ch. 5: Probability Distributions

$$
\mu = \sum x \cdot P(x) \text{ Mean (prob. dist.)}
$$

\n
$$
\sigma = \sqrt{\sum [x^2 \cdot P(x)] - \mu^2}
$$
 Standard deviation (prob. dist.)
\n
$$
P(x) = \frac{n!}{(n - x)! x!} \cdot p^x \cdot q^{n - x} \text{ Binomial probability}
$$

\n
$$
\mu = n \cdot p \text{ Mean (binomial)}
$$

\n
$$
\sigma^2 = n \cdot p \cdot q \text{ Variance (binomial)}
$$

\n
$$
\sigma = \sqrt{n \cdot p \cdot q} \text{ Standard deviation (binomial)}
$$

\n
$$
P(x) = \frac{\mu^x \cdot e^{-\mu}}{x!} \text{ Poisson distribution}
$$

\nwhere $e \approx 2.71828$

Ch. 6: Normal Distribution

$$
z = \frac{x - \bar{x}}{s} \text{ or } \frac{x - \mu}{\sigma} \text{ Standard score}
$$

$$
\mu_{\bar{x}} = \mu \text{ Central limit theorem}
$$

$$
\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \text{Central limit theorem}
$$

(Standard error)

Ch. 7: Confidence Intervals (one population) $\hat{p} - E \leq p \leq \hat{p} + E$ Proportion where $E = z_{\alpha/2} \sqrt{\frac{z_{\alpha/2}}{z_{\alpha/2}}}$ $\bar{x} - E < \mu < \bar{x} + E$ Mean where $E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ (σ known) or $E = t_{\alpha/2} \frac{s}{\sqrt{n}}$ (σ unknown) $\frac{(n-1)s^2}{2} < \sigma^2 < \frac{(n-1)s^2}{2}$ Variance **Ch. 7: Sample Size Determination** $n = \frac{[z_{\alpha/2}]^2 \cdot 0.25}{2}$ Proportion $p_n = \frac{[z_{\alpha/2}]^2 \hat{p} \hat{q}}{r^2}$ Proportion (\hat{p} and \hat{q} are known) $n = \left[\frac{z_{\alpha/2}\sigma}{F}\right]$ Mean **Ch. 9: Confidence Intervals (two populations)** where $E = z_{\alpha/2} \sqrt{\frac{z_{\alpha/2}}{z_{\alpha/2}}}$ $(\bar{x}_1 - \bar{x}_2) - E < (\mu_1 - \mu_2) < (\bar{x}_1 - \bar{x}_2) + E$ (Indep.) where $E = t_{\alpha/2} \sqrt{\frac{2}{\alpha}}$ $(\sigma_1$ and σ_2 unknown and not assumed equal) (σ_1 and σ_2 unknown but assumed equal) $(\sigma_1, \sigma_2 \text{ known})$ $\overline{d} - E < \mu_d < \overline{d} + E$ (Matched pairs) where $E = t_{\alpha/2} \frac{s_d}{\sqrt{n}}$ (df = *n* - 1) \sqrt{n} $E = z_{\alpha/2} \sqrt{\frac{E}{\alpha/2}}$ σ_1^2 *n*1 $+\frac{\sigma_2^2}{\sigma_1^2}$ $\frac{\sigma_2^2}{n_2}$ < $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}$ $(n_1 - 1) + (n_2 - 1)$ $E = t_{\alpha/2} \sqrt{\frac{E}{\alpha}}$ *s* 2 *p* $\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}$ $\frac{s_p^2}{n_2}$ (df = $n_1 + n_2 - 2$) < $\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}$ $\hat{p}_1 \hat{q}_1$ $\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}$ *n*2 $(\hat{p}_1 - \hat{p}_2) - E < (p_1 - p_2) < (\hat{p}_1 - \hat{p}_2) + E$ \boxed{E} 2 *E*2 *E*2 χ^2_R $< \sigma^2 < \frac{(n-1)s^2}{r^2}$ χ^2_L \sqrt{n} \sqrt{n} $\hat{p}\hat{q}$ *n* (df = smaller of $n_1 - 1$, $n_2 - 1$) \leftarrow

Formulas and Tables by Mario F. Triola Copyright 2010 Pearson Education, Inc.

Ch. 8: Test Statistics (one population) $z = \frac{\hat{p} - p}{\sqrt{pq}}$ Proportion—one population **Ch. 9: Test Statistics (two populations)** Two proportions Two means—independent; σ_1 and σ_2 unknown, and not assumed equal. Two means—independent; σ_1 and σ_2 unknown, but assumed equal. **Ch. 11: Goodness-of-Fit and Contingency Tables** where $E = \frac{(\text{row total})(\text{column total})}{(\text{grand total})}$ McNemar's test for matched $\chi^2 = \frac{(|b - c| - 1)^2}{b + c}$ McNemar's te
pairs (df = 1) $\chi^2 = \sum \frac{(O - E)^2}{E}$ Contingency table
 $\det (r - 1)(c - 1)$ *E* $\chi^2 = \sum \frac{(O-E)^2}{E}$ Goodness-of-fit *E* Standard deviation or variance— $F = \frac{s_1^2}{s_2^2}$ Standard deviation or variance—
two populations (where $s_1^2 \ge s_2^2$) s_2^2 Two means—matched pairs $t = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}}$ Two means—
(df = n - 1) $z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ Two means—independent; $\mathbb {V}$ *n*2 $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ $n_1 + n_2 - 2$ $t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{2 - \mu^2}} \quad (\text{df} = n_1 + n_2 - 2)$ $\mathbb V$ *s* 2 *p n*1 $+\frac{s_p^2}{2}$ *n*2 $t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{s_1^2 + s_2^2}}$ df = smaller of
 $n_1 - 1, n_2 - 1$ $\mathbb {V}$ s_1^2 *n*1 $+\frac{s_2^2}{2}$ *n*2 $z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{p_1 - p_2}}$ $\mathbb V$ $\frac{\overline{pq}}{n_1} + \frac{\overline{pq}}{n_2}$ *n*2 $\chi^2 = \frac{(n-1)s^2}{\sigma^2}$ Standard deviation or variance— σ^2 $t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$ Mean—one population
(*o* unknown) $z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}}$ Mean—one population
(*o* known) B *n* ‹ \uparrow \qquad \qquad $\longleftarrow \frac{x_1 + x_2}{p} = \frac{x_1 + x_2}{n_1 + n_2}$

Ch. 10: Linear Correlation/Regression Correlation $r = \frac{n \sum xy - (\sum x)(\sum y)}{\sqrt{(n^2 - 1)(n^2 - 1)(n^2 - 1)}}$ Slope: *y***-**Intercept: $\hat{y} = b_0 + b_1 x$ Estimated eq. of regression line $\hat{y} - E < y < \hat{y} + E$ Prediction interval where $E = t_{\alpha/2} s_e \sqrt{1 + \frac{1}{n} + \frac{n(x_0 - \bar{x})^2}{n(\Sigma x^2) - (\Sigma x)^2}}$ **Ch. 12: One-Way Analysis of Variance** 1. Use software or calculator to obtain results. Procedure for testing $H_0: \mu_1 = \mu_2 = \mu_3 = \cdots$ $s_e = \sqrt{\frac{\sum (y - \hat{y})^2}{n-2}}$ $\frac{6}{n-2}$ or $\sqrt{ }$ $\Sigma y^2 - b_0 \Sigma y - b_1 \Sigma xy$ $n - 2$ $r^2 = \frac{\text{explained variation}}{\text{total variation}}$ $b_0 = \overline{y} - b_1\overline{x}$ or $b_0 = \frac{(\Sigma y)(\Sigma x^2) - (\Sigma x)(\Sigma xy)}{(\Sigma x)^2}$ $n(\Sigma x^2) - (\Sigma x)^2$ or $b_1 = r \frac{s_1}{s_1}$ *sx* $b_1 = \frac{n \sum xy - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$ or $r = \frac{\sum (z_x z_y)}{n-1}$ $\sqrt{n}(\Sigma x^2) - (\Sigma x)^2 \sqrt{n}(\Sigma y^2) - (\Sigma y)^2$ where $z_x = z$ score for *x* $z_y = z$ score for y $z_x =$

- 2. Identify the *P*-value.
- 3. Form conclusion: If *P*-value $\leq \alpha$, reject the null hypothesis
	- of equal means. If *P*-value $> \alpha$, fail to reject the null hypothesis
		- of equal means.

Ch. 12: Two-Way Analysis of Variance

Procedure:

- 1. Use software or a calculator to obtain results.
- 2. Test H_0 : There is no interaction between the row factor and column factor.
- 3. Stop if H_0 from Step 2 is rejected. If *H*⁰ from Step 2 is not rejected (so there does not appear to be an interaction effect), proceed with these two tests: Test for effects from the row factor. Test for effects from the column factor.