Summary of Convergence Tests for Series

Let $\sum_{n=1}^{n} a_n$ be an infinite series of **positive** terms.

The series
$$\sum_{n=1}^{\infty} a_n$$
 converges if and only if the *sequence* of partial sums, $S_n = a_1 + a_2 + a_3 + \cdots + a_n$, converges.
NOTE: $\lim_{n \to \infty} S_n = \sum_{n=1}^{\infty} a_n$

Divergence Test: If $\lim_{n \to \infty} a_n \neq 0$, the series $\sum_{n=1}^{\infty} a_n$ diverges.

<u>Example</u>: The series $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + 1}}$ is divergent since $\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n^2}}} = 1$

This means that the **terms** of a convergent series must approach zero. That is, if $\sum a_n$ converges, then

 $\lim_{n \to \infty} a_n = 0.$ However, $\lim_{n \to \infty} a_n = 0$ does not imply convergence.

Geometric Series: THIS is our model series A geometric series $a + ar + ar^2 + \dots + ar^{n-1} + \dots$ converges for -1 < r < 1.

Note: $r = \frac{a_{n+1}}{a_n}$ If the series converges, the sum of the series is $\frac{a}{1-r}$.

<u>Example</u>: The series $\sum_{n=1}^{\infty} 5\left(\frac{7}{8}\right)^n$ converges with $a = a_1 = \frac{35}{8}$ and $r = \frac{7}{8}$. The sum of the series is 35.

Integral Test: If *f* is a continuous, positive, decreasing function on $[1,\infty)$ with $f(n) = a_n$, then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the improper integral $\int_{1}^{\infty} f(x) dx$ converges.

p-series: The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent for p > 1 and diverges otherwise. <u>Examples</u>: The series $\sum_{n=1}^{\infty} \frac{1}{n^{1.001}}$ is convergent but the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

Ratio Test: (a) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$ then the series $\sum_{n=1}^{\infty} a_n$ converges; (b) if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$ the series *diverges*. **Otherwise**, you must use a different test for convergence.

This says that if the series eventually behaves like a convergent (divergent) geometric series, it converges (diverges). If this limit is **one**, the test is inconclusive and a different test is required. Specifically, **the Ratio Test** <u>does not</u> work for *p*-series.

Comparison Test: Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms. (a) If $\sum_{n=1}^{\infty} b_n$ is convergent and $a_n \le b_n$ for all *n*, then $\sum_{n=1}^{\infty} a_n$ converges. (b) If $\sum_{n=1}^{\infty} b_n$ is divergent and $a_n \ge b_n$ for all *n*, then $\sum_{n=1}^{\infty} a_n$ diverges.

The Comparison Test requires that you make one of two comparisons:

- Compare an unknown series to a LARGER known *convergent* series (**smaller than convergent is convergent**)
- Compare an unknown series to a SMALLER known *divergent* series (**bigger than divergent is divergent**)

Examples: $\sum_{n=2}^{\infty} \frac{3n}{n^2 - 2} > \sum_{n=2}^{\infty} \frac{3n}{n^2} = 3\sum_{n=2}^{\infty} \frac{1}{n}$ which is a *divergent* harmonic series. Since the original series is larger

by comparison, it is divergent.

We have $\sum_{n=1}^{\infty} \frac{5n}{2n^3 + n^2 + 1} < \sum_{n=1}^{\infty} \frac{5n}{2n^3} = \frac{5}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}$ which is a convergent *p*-series. Since the original series is

smaller by comparison, it is convergent.

Limit Comparison Test: Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms. If

 $\lim_{n \to \infty} \frac{a_n}{b_n} = c \text{ where } 0 < c < \infty \text{, then either both series converge or both series diverge. (Useful for$ *p* $-series)}$

<u>Rule of Thumb</u>: To obtain a series for comparison, omit lower order terms in the numerator and the denominator and then simplify.

<u>Examples</u>: For the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + n + 3}$, compare to $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ which is a convergent *p*-series.

For the series $\sum_{n=1}^{\infty} \frac{\pi^n + \sqrt{n}}{3^n + n^2}$, compare to $\sum_{n=1}^{\infty} \frac{\pi^n}{3^n} = \sum_{n=1}^{\infty} \left(\frac{\pi}{3}\right)^n$ which is a divergent geometric series.

Alternating Series Test: If the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots$

satisfies (a) $b_n > b_{n+1}$ and (b) $\lim_{n \to \infty} b_n = 0$, then the series converges.

<u>Remainder</u>: $|R_n| = |s - s_n| \le b_{n+1}$

Absolute convergence simply means that the series converges *without* alternating (all signs and terms are positive).

<u>Examples</u>: The series $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ is convergent but *not* absolutely convergent.

Alternating *p*-series: The alternating *p*-series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges for p > 0. <u>Examples</u>: The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ and the Alternating Harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ are convergent.