
Summary of Convergence Tests for Series 
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This means that the terms of a convergent series must approach zero.  That is, if ∑ na converges, then 
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Integral Test:  If f is a continuous, positive, decreasing function on ),1[ ∞  with nanf =)( , then the series 
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Otherwise, you must use a different test for convergence. 
 
This says that if the series eventually behaves like a convergent (divergent) geometric series, it converges 
(diverges).  If this limit is one, the test is inconclusive and a different test is required.  Specifically, the Ratio 
Test does not work for p-series. 



Comparison Test:  Suppose ∑
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The Comparison Test requires that you make one of two comparisons: 
• Compare an unknown series to a LARGER known convergent series (smaller than convergent is 

convergent) 
• Compare an unknown series to a SMALLER known divergent series (bigger than divergent is 

divergent) 
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We have ∑∑∑
∞

=

∞

=

∞

=

=<
++ 1

2
1

3
1

23

1
2
5

2
5

12
5

nnn nn
n

nn
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smaller by comparison, it is convergent. 

Limit Comparison Test:  Suppose ∑
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Rule of Thumb:  To obtain a series for comparison, omit lower order terms in the numerator and the 
denominator and then simplify. 
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Alternating Series Test:  If the alternating series ( )∑
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Absolute convergence simply means that the series converges without alternating (all signs and terms are 
positive). 
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